Spaces:
Sleeping
Sleeping
File size: 11,106 Bytes
27cb60a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
"""Unify JAO datasets into single timeline.
Combines MaxBEX, CNEC/PTDF, LTA, and Net Positions data into a single
unified dataset with proper timestamp alignment.
Author: Claude
Date: 2025-11-06
"""
from pathlib import Path
from typing import Tuple
import polars as pl
def validate_timeline(df: pl.DataFrame, name: str) -> None:
"""Validate timeline is hourly with no gaps."""
print(f"\nValidating {name} timeline...")
# Check sorted
if not df['mtu'].is_sorted():
raise ValueError(f"{name}: Timeline not sorted")
# Check for gaps (should be hourly)
time_diffs = df['mtu'].diff().drop_nulls()
most_common = time_diffs.mode()[0]
# Most common should be 1 hour (allow for DST transitions)
if most_common.total_seconds() != 3600:
print(f" [WARNING] Most common time diff: {most_common} (expected 1 hour)")
print(f" [OK] {name} timeline validated: {len(df)} records, sorted")
def add_timestamp_to_maxbex(
maxbex: pl.DataFrame,
master_timeline: pl.DataFrame
) -> pl.DataFrame:
"""Add mtu timestamp to MaxBEX via row alignment."""
print("\nAdding timestamp to MaxBEX...")
# Verify same length
if len(maxbex) != len(master_timeline):
raise ValueError(
f"MaxBEX ({len(maxbex)}) and timeline ({len(master_timeline)}) "
"have different lengths"
)
# Add mtu column via hstack
maxbex_with_time = maxbex.hstack(master_timeline)
print(f" [OK] MaxBEX timestamp added: {len(maxbex_with_time)} records")
return maxbex_with_time
def fill_lta_gaps(
lta: pl.DataFrame,
master_timeline: pl.DataFrame
) -> pl.DataFrame:
"""Fill LTA gaps using forward-fill strategy."""
print("\nFilling LTA gaps...")
# Report initial state
initial_records = len(lta)
expected_records = len(master_timeline)
missing_hours = expected_records - initial_records
print(f" Initial LTA records: {initial_records:,}")
print(f" Expected records: {expected_records:,}")
print(f" Missing hours: {missing_hours:,} ({missing_hours/expected_records*100:.1f}%)")
# Remove metadata columns
lta_clean = lta.drop(['is_masked', 'masking_method'], strict=False)
# Left join master timeline with LTA
lta_complete = master_timeline.join(
lta_clean,
on='mtu',
how='left'
)
# Get border columns
border_cols = [c for c in lta_complete.columns if c.startswith('border_')]
# Forward-fill gaps (LTA changes rarely)
lta_complete = lta_complete.with_columns([
pl.col(col).forward_fill().alias(col)
for col in border_cols
])
# Fill any remaining nulls at start with 0
lta_complete = lta_complete.fill_null(0)
# Verify no nulls remain
null_count = lta_complete.null_count().sum_horizontal()[0]
if null_count > 0:
raise ValueError(f"LTA still has {null_count} nulls after filling")
print(f" [OK] LTA complete: {len(lta_complete)} records, 0 nulls")
return lta_complete
def broadcast_cnec_to_hourly(
cnec: pl.DataFrame,
master_timeline: pl.DataFrame
) -> pl.DataFrame:
"""Broadcast daily CNEC snapshots to hourly timeline."""
print("\nBroadcasting CNEC from daily to hourly...")
# Report initial state
unique_days = cnec['collection_date'].dt.date().n_unique()
print(f" CNEC unique days: {unique_days}")
print(f" Target hours: {len(master_timeline):,}")
# Extract date from master timeline
master_with_date = master_timeline.with_columns([
pl.col('mtu').dt.date().alias('date')
])
# Extract date from CNEC collection_date
cnec_with_date = cnec.with_columns([
pl.col('collection_date').dt.date().alias('date')
])
# Drop collection_date, keep date for join
cnec_with_date = cnec_with_date.drop('collection_date')
# Join: Each day's CNEC snapshot broadcasts to 24-26 hours
# Use left join to keep all hours even if no CNEC data
cnec_hourly = master_with_date.join(
cnec_with_date,
on='date',
how='left'
)
# Drop the date column used for join
cnec_hourly = cnec_hourly.drop('date')
print(f" [OK] CNEC hourly: {len(cnec_hourly)} records")
print(f" [INFO] CNEC in long format - multiple rows per timestamp (one per CNEC)")
return cnec_hourly
def join_datasets(
master_timeline: pl.DataFrame,
maxbex_with_time: pl.DataFrame,
lta_complete: pl.DataFrame,
netpos: pl.DataFrame,
cnec_hourly: pl.DataFrame
) -> pl.DataFrame:
"""Join all datasets on mtu timestamp."""
print("\nJoining all datasets...")
# Start with MaxBEX (already has mtu via hstack)
# MaxBEX is already aligned by row, so we can use it directly
unified = maxbex_with_time.clone()
print(f" Starting with MaxBEX: {unified.shape}")
# Join LTA
unified = unified.join(
lta_complete,
on='mtu',
how='left',
suffix='_lta'
)
# Drop duplicate mtu if created
if 'mtu_lta' in unified.columns:
unified = unified.drop('mtu_lta')
print(f" After LTA: {unified.shape}")
# Join NetPos
netpos_clean = netpos.drop(['collection_date'], strict=False)
unified = unified.join(
netpos_clean,
on='mtu',
how='left',
suffix='_netpos'
)
# Drop duplicate mtu if created
if 'mtu_netpos' in unified.columns:
unified = unified.drop('mtu_netpos')
print(f" After NetPos: {unified.shape}")
# Note: CNEC is in long format, would explode the dataset
# We'll handle CNEC separately in feature engineering
print(f" [INFO] CNEC not joined (long format - handle in feature engineering)")
# Sort by timestamp (joins may have shuffled rows)
print(f"\nSorting by timestamp...")
unified = unified.sort('mtu')
print(f" [OK] Unified dataset: {unified.shape}")
print(f" [OK] Timeline sorted: {unified['mtu'].is_sorted()}")
return unified
def unify_jao_data(
maxbex_path: Path,
cnec_path: Path,
lta_path: Path,
netpos_path: Path,
output_dir: Path
) -> Tuple[pl.DataFrame, pl.DataFrame]:
"""Unify all JAO datasets into single timeline.
Args:
maxbex_path: Path to MaxBEX parquet file
cnec_path: Path to CNEC/PTDF parquet file
lta_path: Path to LTA parquet file
netpos_path: Path to Net Positions parquet file
output_dir: Directory to save unified data
Returns:
Tuple of (unified_wide, cnec_hourly) DataFrames
"""
print("\n" + "=" * 80)
print("JAO DATA UNIFICATION")
print("=" * 80)
# 1. Load datasets
print("\nLoading datasets...")
maxbex = pl.read_parquet(maxbex_path)
cnec = pl.read_parquet(cnec_path)
lta = pl.read_parquet(lta_path)
netpos = pl.read_parquet(netpos_path)
print(f" MaxBEX: {maxbex.shape}")
print(f" CNEC: {cnec.shape}")
print(f" LTA: {lta.shape}")
print(f" NetPos (raw): {netpos.shape}")
# 2. Deduplicate NetPos and align MaxBEX
# MaxBEX has no timestamp - it's row-aligned with NetPos
# Need to deduplicate both together to maintain alignment
print("\nDeduplicating NetPos and aligning MaxBEX...")
# Verify same length (must be row-aligned)
if len(maxbex) != len(netpos):
raise ValueError(
f"MaxBEX ({len(maxbex)}) and NetPos ({len(netpos)}) "
"have different lengths - cannot align"
)
# Add mtu column to MaxBEX via hstack (before deduplication)
maxbex_with_time = maxbex.hstack(netpos.select(['mtu']))
print(f" MaxBEX + NetPos aligned: {maxbex_with_time.shape}")
# Deduplicate MaxBEX based on mtu timestamp
maxbex_before = len(maxbex_with_time)
maxbex_with_time = maxbex_with_time.unique(subset=['mtu'], keep='first')
maxbex_after = len(maxbex_with_time)
maxbex_duplicates = maxbex_before - maxbex_after
if maxbex_duplicates > 0:
print(f" MaxBEX deduplicated: {maxbex_with_time.shape} ({maxbex_duplicates:,} duplicates removed)")
# Deduplicate NetPos
netpos_before = len(netpos)
netpos = netpos.unique(subset=['mtu'], keep='first')
netpos_after = len(netpos)
netpos_duplicates = netpos_before - netpos_after
if netpos_duplicates > 0:
print(f" NetPos deduplicated: {netpos.shape} ({netpos_duplicates:,} duplicates removed)")
# 3. Create master timeline from deduplicated NetPos
print("\nCreating master timeline from Net Positions...")
master_timeline = netpos.select(['mtu']).sort('mtu')
validate_timeline(master_timeline, "Master")
# 4. Fill LTA gaps
lta_complete = fill_lta_gaps(lta, master_timeline)
# 5. Broadcast CNEC to hourly
cnec_hourly = broadcast_cnec_to_hourly(cnec, master_timeline)
# 6. Join datasets (wide format: MaxBEX + LTA + NetPos)
unified_wide = join_datasets(
master_timeline,
maxbex_with_time,
lta_complete,
netpos,
cnec_hourly
)
# 7. Save outputs
print("\nSaving unified data...")
output_dir.mkdir(parents=True, exist_ok=True)
unified_wide_path = output_dir / 'unified_jao_24month.parquet'
cnec_hourly_path = output_dir / 'cnec_hourly_24month.parquet'
unified_wide.write_parquet(unified_wide_path)
cnec_hourly.write_parquet(cnec_hourly_path)
print(f" [OK] Unified wide: {unified_wide_path}")
print(f" Size: {unified_wide_path.stat().st_size / (1024**2):.2f} MB")
print(f" [OK] CNEC hourly: {cnec_hourly_path}")
print(f" Size: {cnec_hourly_path.stat().st_size / (1024**2):.2f} MB")
# 8. Validation summary
print("\n" + "=" * 80)
print("UNIFICATION COMPLETE")
print("=" * 80)
print(f"Unified wide dataset: {unified_wide.shape}")
print(f" - mtu timestamp: 1 column")
print(f" - MaxBEX borders: 132 columns")
print(f" - LTA borders: 38 columns")
print(f" - Net Positions: 28 columns")
print(f" Total: {unified_wide.shape[1]} columns")
print()
print(f"CNEC hourly dataset: {cnec_hourly.shape}")
print(f" - Long format (one row per CNEC per hour)")
print(f" - Used in feature engineering phase")
print("=" * 80)
print()
return unified_wide, cnec_hourly
def main():
"""Main execution."""
# Paths
base_dir = Path.cwd()
data_dir = base_dir / 'data' / 'raw' / 'phase1_24month'
output_dir = base_dir / 'data' / 'processed'
maxbex_path = data_dir / 'jao_maxbex.parquet'
cnec_path = data_dir / 'jao_cnec_ptdf.parquet'
lta_path = data_dir / 'jao_lta.parquet'
netpos_path = data_dir / 'jao_net_positions.parquet'
# Verify files exist
for path in [maxbex_path, cnec_path, lta_path, netpos_path]:
if not path.exists():
raise FileNotFoundError(f"Required file not found: {path}")
# Unify
unified_wide, cnec_hourly = unify_jao_data(
maxbex_path,
cnec_path,
lta_path,
netpos_path,
output_dir
)
print("SUCCESS: JAO data unified and saved to data/processed/")
if __name__ == '__main__':
main()
|