File size: 6,907 Bytes
3ac5032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#!/usr/bin/env python3
"""
Analyze hourly MAE patterns to establish baseline before optimization.

This script loads September 2025 forecast results and computes MAE per hour-of-day
to identify which hours have highest errors (likely ramping hours: 7-9, 17-21).
"""

import polars as pl
import numpy as np
from pathlib import Path
from datetime import datetime

# Paths
PROJECT_ROOT = Path(__file__).parent.parent
FORECAST_PATH = PROJECT_ROOT / 'results' / 'september_2025_forecast_full_14day.parquet'
OUTPUT_PATH = PROJECT_ROOT / 'results' / 'september_2025_hourly_mae_baseline.csv'

def load_data():
    """Load forecast and actual data."""
    print('[INFO] Loading forecast results...')
    df_forecast = pl.read_parquet(FORECAST_PATH)
    print(f'[INFO] Forecast shape: {df_forecast.shape}')
    print(f'[INFO] Forecast period: {df_forecast["timestamp"].min()} to {df_forecast["timestamp"].max()}')

    # Load actuals from HuggingFace dataset
    print('[INFO] Loading actuals from HuggingFace dataset...')
    from datasets import load_dataset
    import os

    dataset = load_dataset('evgueni-p/fbmc-features-24month', split='train', token=os.environ.get('HF_TOKEN'))
    df_actuals_full = pl.from_arrow(dataset.data.table)

    # Filter actuals to forecast period (Sept 2-15, 2025)
    forecast_start = datetime(2025, 9, 2)
    forecast_end = datetime(2025, 9, 16)

    df_actuals = df_actuals_full.filter(
        (pl.col('timestamp') >= forecast_start) &
        (pl.col('timestamp') < forecast_end)
    )

    print(f'[INFO] Actuals filtered: {df_actuals.shape[0]} hours')

    return df_forecast, df_actuals


def compute_hourly_mae(df_forecast, df_actuals):
    """Compute MAE per hour-of-day for all borders."""
    print('[INFO] Computing hourly MAE...')

    # Extract border names from forecast columns
    forecast_cols = [col for col in df_forecast.columns if col.endswith('_median')]
    border_names = [col.replace('_median', '') for col in forecast_cols]

    print(f'[INFO] Processing {len(border_names)} borders...')

    hourly_results = []

    for border in border_names:
        forecast_col = f'{border}_median'
        actual_col = f'target_border_{border}'

        # Skip if actual column missing
        if actual_col not in df_actuals.columns:
            print(f'[WARNING] Skipping {border} - no actual data')
            continue

        # Create unified dataframe
        df_border = df_forecast.select(['timestamp', forecast_col]).join(
            df_actuals.select(['timestamp', actual_col]),
            on='timestamp',
            how='inner'
        )

        # Add hour-of-day
        df_border = df_border.with_columns([
            pl.col('timestamp').dt.hour().alias('hour')
        ])

        # Compute MAE per hour
        for hour in range(24):
            hour_df = df_border.filter(pl.col('hour') == hour)

            if len(hour_df) == 0:
                continue

            mae = (hour_df[forecast_col] - hour_df[actual_col]).abs().mean()

            hourly_results.append({
                'border': border,
                'hour': hour,
                'mae': mae,
                'n_hours': len(hour_df)
            })

    return pl.DataFrame(hourly_results)


def analyze_patterns(df_hourly):
    """Analyze hourly MAE patterns."""
    print('\n' + '='*60)
    print('HOURLY MAE ANALYSIS')
    print('='*60)

    # Overall statistics per hour (aggregated across all borders)
    hourly_stats = df_hourly.group_by('hour').agg([
        pl.col('mae').mean().alias('mean_mae'),
        pl.col('mae').median().alias('median_mae'),
        pl.col('mae').std().alias('std_mae'),
        pl.col('mae').min().alias('min_mae'),
        pl.col('mae').max().alias('max_mae'),
        pl.col('border').count().alias('n_borders')
    ]).sort('hour')

    print('\n[INFO] MAE by Hour-of-Day (Averaged Across All Borders):')
    print(hourly_stats)

    # Identify problem hours (highest MAE)
    print('\n[INFO] Top 5 Worst Hours (Highest MAE):')
    worst_hours = hourly_stats.sort('mean_mae', descending=True).head(5)
    print(worst_hours)

    # Identify best hours (lowest MAE)
    print('\n[INFO] Top 5 Best Hours (Lowest MAE):')
    best_hours = hourly_stats.sort('mean_mae').head(5)
    print(best_hours)

    # Ramping hour analysis
    ramping_hours = [5, 6, 7, 8, 9, 17, 18, 19, 20, 21]
    non_ramping_hours = [h for h in range(24) if h not in ramping_hours]

    ramping_mae = hourly_stats.filter(pl.col('hour').is_in(ramping_hours))['mean_mae'].mean()
    non_ramping_mae = hourly_stats.filter(pl.col('hour').is_in(non_ramping_hours))['mean_mae'].mean()

    print(f'\n[INFO] Ramping hours (5-9, 17-21) MAE: {ramping_mae:.2f} MW')
    print(f'[INFO] Non-ramping hours MAE: {non_ramping_mae:.2f} MW')
    print(f'[INFO] Ramping penalty: {(ramping_mae - non_ramping_mae) / non_ramping_mae * 100:.1f}% higher')

    # Peak hour analysis
    peak_hours = [7, 8, 9, 17, 18, 19, 20]
    peak_mae = hourly_stats.filter(pl.col('hour').is_in(peak_hours))['mean_mae'].mean()

    print(f'\n[INFO] Peak hours (7-9, 17-20) MAE: {peak_mae:.2f} MW')

    # Night hour analysis
    night_hours = [22, 23, 0, 1, 2, 3, 4]
    night_mae = hourly_stats.filter(pl.col('hour').is_in(night_hours))['mean_mae'].mean()

    print(f'[INFO] Night hours (22-4) MAE: {night_mae:.2f} MW')

    return hourly_stats


def identify_problematic_borders(df_hourly):
    """Identify borders with largest hourly MAE variations."""
    print('\n[INFO] Borders with Highest Hourly MAE Variation:')

    border_variation = df_hourly.group_by('border').agg([
        pl.col('mae').mean().alias('mean_mae'),
        pl.col('mae').std().alias('std_mae'),
        pl.col('mae').max().alias('max_mae'),
        (pl.col('mae').max() - pl.col('mae').min()).alias('range_mae')
    ]).sort('std_mae', descending=True)

    print(border_variation.head(10))

    return border_variation


def main():
    """Main analysis workflow."""
    print('[START] Hourly MAE Baseline Analysis')
    print(f'[INFO] Forecast file: {FORECAST_PATH}')

    # Load data
    df_forecast, df_actuals = load_data()

    # Compute hourly MAE
    df_hourly = compute_hourly_mae(df_forecast, df_actuals)

    print(f'\n[INFO] Computed hourly MAE for {df_hourly["border"].n_unique()} borders')

    # Analyze patterns
    hourly_stats = analyze_patterns(df_hourly)

    # Identify problematic borders
    border_variation = identify_problematic_borders(df_hourly)

    # Save detailed results
    df_hourly.write_csv(OUTPUT_PATH)
    print(f'\n[INFO] Detailed hourly MAE saved to: {OUTPUT_PATH}')

    # Save summary stats
    summary_path = PROJECT_ROOT / 'results' / 'september_2025_hourly_summary.csv'
    hourly_stats.write_csv(summary_path)
    print(f'[INFO] Hourly summary saved to: {summary_path}')

    print('\n[SUCCESS] Hourly MAE baseline analysis complete!')


if __name__ == '__main__':
    main()