Spaces:
Sleeping
Sleeping
File size: 12,927 Bytes
f4be780 f2524dc f4be780 f2524dc f4be780 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
#!/usr/bin/env python3
"""
Gradio Interface for Dynamic Forecast System
Interactive interface for time-aware forecasting with run date selection.
"""
import os
import gradio as gr
import polars as pl
import pandas as pd
from datetime import datetime, timedelta
from datasets import load_dataset
from src.forecasting.dynamic_forecast import DynamicForecast
from src.forecasting.feature_availability import FeatureAvailability
# Global variables for caching
dataset = None
forecaster = None
borders = None
def load_data():
"""Load dataset once at startup."""
global dataset, forecaster, borders
print("[*] Loading dataset from HuggingFace...")
# Load HF token from environment variable
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise ValueError(
"HF_TOKEN not found in environment variables. "
"Please set HF_TOKEN in your environment or .env file."
)
ds = load_dataset(
"evgueni-p/fbmc-features-24month",
split="train",
token=hf_token
)
dataset = pl.from_pandas(ds.to_pandas())
# Ensure timestamp is datetime
if dataset['timestamp'].dtype == pl.String:
dataset = dataset.with_columns(pl.col('timestamp').str.to_datetime())
elif dataset['timestamp'].dtype != pl.Datetime:
dataset = dataset.with_columns(pl.col('timestamp').cast(pl.Datetime))
# Initialize forecaster
forecaster = DynamicForecast(
dataset=dataset,
context_hours=512,
forecast_hours=336 # Fixed at 14 days
)
# Extract borders
target_cols = [col for col in dataset.columns if col.startswith('target_border_')]
borders = [col.replace('target_border_', '') for col in target_cols]
print(f"[OK] Loaded {len(dataset)} rows, {len(dataset.columns)} columns")
print(f"[OK] Found {len(borders)} borders")
print(f"[OK] Date range: {dataset['timestamp'].min()} to {dataset['timestamp'].max()}")
return True
def get_dataset_info():
"""Get dataset information for display."""
if dataset is None:
return "Dataset not loaded"
date_min = str(dataset['timestamp'].min())
date_max = str(dataset['timestamp'].max())
info = f"""
**Dataset Information**
- Total rows: {len(dataset):,}
- Total columns: {len(dataset.columns)}
- Date range: {date_min} to {date_max}
- Borders available: {len(borders)}
"""
return info
def get_feature_summary():
"""Get feature categorization summary."""
if forecaster is None:
return "Forecaster not initialized"
summary = forecaster.get_feature_summary()
text = f"""
**Feature Categorization**
- Full-horizon D+14: {summary['full_horizon_d14']} features
(temporal, weather, CNEC outages, LTA)
- Partial D+1: {summary['partial_d1']} features
(load forecasts, masked D+2-D+14)
- Historical only: {summary['historical']} features
(prices, generation, demand, lags, etc.)
- **Total: {summary['total']} features**
"""
return text
def validate_run_date(run_date_str):
"""Validate run date is within dataset bounds."""
if not run_date_str:
return False, "Please select a run date"
try:
run_date = datetime.strptime(run_date_str, "%Y-%m-%d %H:%M:%S")
except:
return False, "Invalid date format (use YYYY-MM-DD HH:MM:SS)"
dataset_min = dataset['timestamp'].min()
dataset_max = dataset['timestamp'].max()
# Run date must have 512 hours of context before it
min_valid = dataset_min + timedelta(hours=512)
# Run date must have 336 hours of future data after it
max_valid = dataset_max - timedelta(hours=336)
if run_date < min_valid:
return False, f"Run date too early (need 512h context). Minimum: {min_valid}"
if run_date > max_valid:
return False, f"Run date too late (need 336h future data). Maximum: {max_valid}"
return True, "Run date valid"
def prepare_forecast(run_date_str, border):
"""Prepare forecast data for selected run date and border."""
if dataset is None or forecaster is None:
return "Error: Dataset not loaded", "", ""
# Validate inputs
if not border:
return "Error: Please select a border", "", ""
is_valid, msg = validate_run_date(run_date_str)
if not is_valid:
return f"Error: {msg}", "", ""
try:
run_date = datetime.strptime(run_date_str, "%Y-%m-%d %H:%M:%S")
# Prepare data
context_data, future_data = forecaster.prepare_forecast_data(run_date, border)
# Validate no leakage
is_valid, errors = forecaster.validate_no_leakage(
context_data, future_data, run_date
)
if not is_valid:
error_msg = "Data leakage detected:\n" + "\n".join(f"- {e}" for e in errors)
return error_msg, "", ""
# Build result summary
forecast_start = run_date + timedelta(hours=1)
forecast_end = forecast_start + timedelta(hours=335)
result = f"""
**Forecast Configuration**
- Border: {border}
- Run date: {run_date}
- Forecast horizon: D+1 to D+14 (336 hours, FIXED)
- Forecast period: {forecast_start} to {forecast_end}
**Data Preparation Summary**
- Context shape: {context_data.shape} (historical data)
- Future shape: {future_data.shape} (future covariates)
- Context dates: {context_data['timestamp'].min()} to {context_data['timestamp'].max()}
- Future dates: {future_data['timestamp'].min()} to {future_data['timestamp'].max()}
- Leakage validation: PASSED
**Feature Availability**
- Full-horizon D+14: Available for all 336 hours
- Partial D+1 (load forecasts): Available for first 24 hours, masked 25-336
- Historical features: Not used for forecasting (context only)
**Next Steps**
1. Data has been prepared with time-aware extraction
2. Load forecast masking applied (D+1 only)
3. LTA forward-filling applied (constant across horizon)
4. Ready for Chronos-2 inference (requires GPU)
**Note**: This is a dry-run demonstration. Actual inference requires GPU with Chronos-2 model.
"""
# Create context preview
context_preview = context_data.head(10).to_string()
# Create future preview
future_preview = future_data.head(10).to_string()
return result, context_preview, future_preview
except Exception as e:
return f"Error: {str(e)}", "", ""
def create_interface():
"""Create Gradio interface."""
# Load data at startup
load_data()
with gr.Blocks(title="FBMC Dynamic Forecast System") as app:
gr.Markdown("# FBMC Dynamic Forecast System")
gr.Markdown("""
**Time-Aware Forecasting with Run Date Selection**
This interface demonstrates the dynamic forecast pipeline that prevents data leakage
by using only data available at the selected run date.
**Key Features**:
- Dynamic run date selection (prevents data leakage)
- Fixed 14-day forecast horizon (D+1 to D+14, always 336 hours)
- Time-aware feature categorization (603 full + 12 partial + 1,899 historical)
- Availability masking for partial features (load forecasts D+1 only)
- Built-in leakage validation
""")
with gr.Tab("Forecast Configuration"):
with gr.Row():
with gr.Column():
gr.Markdown("### Dataset Information")
dataset_info = gr.Textbox(
label="Dataset Info",
value=get_dataset_info(),
lines=8,
interactive=False
)
feature_summary = gr.Textbox(
label="Feature Summary",
value=get_feature_summary(),
lines=10,
interactive=False
)
with gr.Column():
gr.Markdown("### Forecast Configuration")
run_date_input = gr.Textbox(
label="Run Date (YYYY-MM-DD HH:MM:SS)",
placeholder="2025-08-15 23:00:00",
value="2025-08-15 23:00:00"
)
border_dropdown = gr.Dropdown(
label="Border",
choices=borders if borders else [],
value=borders[0] if borders else None
)
gr.Markdown("""
**Forecast Horizon**: Fixed at 14 days (D+1 to D+14, 336 hours)
**Validation Rules**:
- Run date must have 512 hours of historical context
- Run date must have 336 hours of future data (for this demo)
- Valid range: ~22 days from dataset start to ~14 days before dataset end
""")
prepare_btn = gr.Button("Prepare Forecast Data", variant="primary")
with gr.Row():
result_output = gr.Textbox(
label="Forecast Preparation Result",
lines=25,
interactive=False
)
with gr.Tab("Data Preview"):
with gr.Row():
context_preview = gr.Textbox(
label="Context Data (first 10 rows)",
lines=20,
interactive=False
)
future_preview = gr.Textbox(
label="Future Covariates (first 10 rows)",
lines=20,
interactive=False
)
with gr.Tab("About"):
gr.Markdown("""
## About This System
### Purpose
Prevent data leakage in FBMC cross-border flow forecasting by implementing
time-aware data extraction that respects feature availability windows.
### Architecture
1. **Feature Categorization**: All 2,514 features categorized by availability
- Full-horizon D+14: 603 features (temporal, weather, outages, LTA)
- Partial D+1: 12 features (load forecasts, masked D+2-D+14)
- Historical: 1,899 features (prices, generation, demand, lags)
2. **Time-Aware Extraction**: DynamicForecast class
- Extracts context data (all data before run_date)
- Extracts future covariates (D+1 to D+14 only)
- Applies availability masking for partial features
3. **Leakage Validation**: Built-in checks
- Context timestamps < run_date
- Future timestamps >= run_date + 1 hour
- No overlap between context and future
- Only future covariates in future data
### Forecast Horizon
- **FIXED at 14 days** (D+1 to D+14, 336 hours)
- No horizon selector needed (always forecasts full 14 days)
- D+1 starts 1 hour after run_date (ET convention)
### Feature Availability
- **Load Forecasts**: Published day-ahead, available D+1 only
- **Weather**: Forecasts available for full D+14 horizon
- **CNEC Outages**: Planned maintenance published weeks ahead
- **LTA**: Long-term allocations, forward-filled from D+0
- **Historical**: Prices, generation, demand (context only)
### Time Conventions
- **Electricity Time (ET)**: Hour 1 = 00:00-01:00, Hour 24 = 23:00-00:00
- **D+1**: Next day, hours 1-24 (24 hours starting at 00:00)
- **D+14**: 14 days ahead (336 hours total)
### Model
- **Chronos 2 Large** (710M params, zero-shot inference)
- Supports partial availability via NaN masking
- Multivariate time series forecasting
### Files
- `src/forecasting/feature_availability.py`: Feature categorization
- `src/forecasting/dynamic_forecast.py`: Time-aware data extraction
- `smoke_test.py`, `full_inference.py`: Updated inference scripts
- `tests/test_feature_availability.py`: Unit tests (27 tests, all passing)
### Authors
Evgueni Poloukarov, 2025-11-13
""")
# Wire up the button
prepare_btn.click(
fn=prepare_forecast,
inputs=[run_date_input, border_dropdown],
outputs=[result_output, context_preview, future_preview]
)
return app
if __name__ == "__main__":
app = create_interface()
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
|