Spaces:
Sleeping
Sleeping
File size: 9,967 Bytes
10c4205 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# FBMC Chronos-2 Zero-Shot Evaluation\n",
"\n",
"**Performance analysis**: Compare 14-day forecasts vs actual flows (Oct 1-14, 2025)\n",
"\n",
"This notebook evaluates zero-shot forecast accuracy against ground truth."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Environment Setup"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import polars as pl\n",
"import numpy as np\n",
"from datetime import datetime\n",
"from datasets import load_dataset\n",
"import altair as alt\n",
"from pathlib import Path\n",
"\n",
"print(\"Environment setup complete\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Load Forecasts and Actuals"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Load forecasts from full inference run\n",
"forecast_path = Path('/home/user/app/forecasts_14day.parquet')\n",
"if not forecast_path.exists():\n",
" raise FileNotFoundError(\"Run inference_full_14day.ipynb first to generate forecasts\")\n",
"\n",
"forecasts = pl.read_parquet(forecast_path)\n",
"print(f\"Forecasts loaded: {forecasts.shape}\")\n",
"print(f\" Forecast period: {forecasts['timestamp'].min()} to {forecasts['timestamp'].max()}\")\n",
"\n",
"# Load actual values from dataset\n",
"hf_token = os.getenv(\"HF_TOKEN\")\n",
"dataset = load_dataset(\n",
" \"evgueni-p/fbmc-features-24month\",\n",
" split=\"train\",\n",
" token=hf_token\n",
")\n",
"df = pl.from_arrow(dataset.data.table)\n",
"\n",
"# Extract Oct 1-14 actuals\n",
"actuals = df.filter(\n",
" (pl.col('timestamp') >= datetime(2025, 10, 1, 0, 0)) &\n",
" (pl.col('timestamp') <= datetime(2025, 10, 14, 23, 0))\n",
")\n",
"\n",
"# Select only target columns\n",
"target_cols = [col for col in actuals.columns if col.startswith('target_border_')]\n",
"actuals = actuals.select(['timestamp'] + target_cols)\n",
"\n",
"print(f\"Actuals loaded: {actuals.shape}\")\n",
"print(f\" Actual period: {actuals['timestamp'].min()} to {actuals['timestamp'].max()}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. Calculate Error Metrics"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Align forecasts and actuals\n",
"borders = [col.replace('target_border_', '') for col in target_cols]\n",
"\n",
"results = []\n",
"\n",
"for border in borders:\n",
" forecast_col = f'forecast_{border}'\n",
" actual_col = f'target_border_{border}'\n",
" \n",
" if forecast_col not in forecasts.columns:\n",
" print(f\"Warning: No forecast for {border}\")\n",
" continue\n",
" \n",
" # Get forecast and actual values\n",
" y_pred = forecasts[forecast_col].to_numpy()\n",
" y_true = actuals[actual_col].to_numpy()\n",
" \n",
" # Skip if any nulls\n",
" if np.isnan(y_pred).any() or np.isnan(y_true).any():\n",
" print(f\"Warning: Nulls detected for {border}\")\n",
" continue\n",
" \n",
" # Calculate metrics\n",
" mae = np.abs(y_pred - y_true).mean()\n",
" rmse = np.sqrt(((y_pred - y_true) ** 2).mean())\n",
" mape = (np.abs((y_true - y_pred) / (y_true + 1e-8)) * 100).mean()\n",
" \n",
" # D+1 metrics (first 24 hours)\n",
" mae_d1 = np.abs(y_pred[:24] - y_true[:24]).mean()\n",
" \n",
" results.append({\n",
" 'border': border,\n",
" 'mae_14day': mae,\n",
" 'mae_d1': mae_d1,\n",
" 'rmse_14day': rmse,\n",
" 'mape_14day': mape,\n",
" 'actual_mean': y_true.mean(),\n",
" 'actual_std': y_true.std()\n",
" })\n",
"\n",
"results_df = pl.DataFrame(results).sort('mae_d1')\n",
"\n",
"print(f\"\\nEvaluation complete for {len(results)} borders\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4. Overall Performance Summary"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"=\"*60)\n",
"print(\"ZERO-SHOT PERFORMANCE SUMMARY\")\n",
"print(\"=\"*60)\n",
"print(f\"\\nD+1 MAE (First 24 hours):\")\n",
"print(f\" Mean: {results_df['mae_d1'].mean():.1f} MW\")\n",
"print(f\" Median: {results_df['mae_d1'].median():.1f} MW\")\n",
"print(f\" Best: {results_df['mae_d1'].min():.1f} MW ({results_df.filter(pl.col('mae_d1') == pl.col('mae_d1').min())['border'][0]})\")\n",
"print(f\" Worst: {results_df['mae_d1'].max():.1f} MW ({results_df.filter(pl.col('mae_d1') == pl.col('mae_d1').max())['border'][0]})\")\n",
"\n",
"print(f\"\\n14-Day MAE (Full horizon):\")\n",
"print(f\" Mean: {results_df['mae_14day'].mean():.1f} MW\")\n",
"print(f\" Median: {results_df['mae_14day'].median():.1f} MW\")\n",
"\n",
"print(f\"\\n14-Day RMSE:\")\n",
"print(f\" Mean: {results_df['rmse_14day'].mean():.1f} MW\")\n",
"print(f\" Median: {results_df['rmse_14day'].median():.1f} MW\")\n",
"\n",
"print(f\"\\n14-Day MAPE:\")\n",
"print(f\" Mean: {results_df['mape_14day'].mean():.1f}%\")\n",
"print(f\" Median: {results_df['mape_14day'].median():.1f}%\")\n",
"\n",
"# Target check\n",
"target_mae = 150 # MW\n",
"borders_meeting_target = results_df.filter(pl.col('mae_d1') <= target_mae)\n",
"print(f\"\\nBorders meeting D+1 MAE target (<= {target_mae} MW):\")\n",
"print(f\" {len(borders_meeting_target)}/{len(results_df)} ({len(borders_meeting_target)/len(results_df)*100:.1f}%)\")\n",
"\n",
"print(\"\\n\" + \"=\"*60)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5. Top 10 Best and Worst Borders"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Top 10 Best Performers (D+1 MAE):\")\n",
"print(results_df.head(10).select(['border', 'mae_d1', 'mae_14day', 'rmse_14day']))\n",
"\n",
"print(\"\\nTop 10 Worst Performers (D+1 MAE):\")\n",
"print(results_df.tail(10).select(['border', 'mae_d1', 'mae_14day', 'rmse_14day']))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6. Visualize Performance Distribution"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# MAE distribution histogram\n",
"mae_hist = alt.Chart(results_df.to_pandas()).mark_bar().encode(\n",
" x=alt.X('mae_d1:Q', bin=alt.Bin(maxbins=20), title='D+1 MAE (MW)'),\n",
" y=alt.Y('count()', title='Number of Borders')\n",
").properties(\n",
" width=600,\n",
" height=300,\n",
" title='D+1 MAE Distribution Across Borders'\n",
")\n",
"\n",
"# Add target line\n",
"target_line = alt.Chart(pl.DataFrame({'target': [150]})).mark_rule(color='red', strokeDash=[5, 5]).encode(\n",
" x='target:Q'\n",
")\n",
"\n",
"mae_hist + target_line"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 7. Compare Best vs Worst Border"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Select best and worst border\n",
"best_border = results_df.head(1)['border'][0]\n",
"worst_border = results_df.tail(1)['border'][0]\n",
"\n",
"# Create comparison charts\n",
"charts = []\n",
"for border in [best_border, worst_border]:\n",
" # Combine forecast and actual\n",
" viz_data = pl.DataFrame({\n",
" 'timestamp': forecasts['timestamp'],\n",
" 'Forecast': forecasts[f'forecast_{border}'],\n",
" 'Actual': actuals[f'target_border_{border}']\n",
" }).unpivot(index='timestamp', variable_name='type', value_name='flow')\n",
" \n",
" mae = results_df.filter(pl.col('border') == border)['mae_d1'][0]\n",
" \n",
" chart = alt.Chart(viz_data.to_pandas()).mark_line().encode(\n",
" x=alt.X('timestamp:T', title='Date'),\n",
" y=alt.Y('flow:Q', title='Flow (MW)'),\n",
" color='type:N',\n",
" strokeDash='type:N'\n",
" ).properties(\n",
" width=600,\n",
" height=250,\n",
" title=f'{border} (D+1 MAE: {mae:.1f} MW)'\n",
" )\n",
" charts.append(chart)\n",
"\n",
"alt.vconcat(*charts).properties(\n",
" title='Best vs Worst Performing Border'\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 8. Export Results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Save results to CSV\n",
"output_path = Path('/home/user/app/evaluation_results.csv')\n",
"results_df.write_csv(output_path)\n",
"\n",
"print(f\"✓ Results saved to {output_path}\")\n",
"print(f\"\\nEvaluation complete!\")\n",
"print(f\" Borders evaluated: {len(results_df)}\")\n",
"print(f\" Mean D+1 MAE: {results_df['mae_d1'].mean():.1f} MW\")\n",
"print(f\" Target (<= 150 MW): {'ACHIEVED' if results_df['mae_d1'].mean() <= 150 else 'NOT MET'}\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.10.0"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|