File size: 14,929 Bytes
82da022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# Flow-Based Market Coupling (FBMC) Methodology Explanation

## Quick Reference for FBMC Flow Forecasting MVP

---

## 1. What is FBMC?

**Flow-Based Market Coupling (FBMC)** is a European electricity market methodology that:
- Calculates cross-border trading capacity based on **network physics** (power flows)
- Replaces simple border-to-border capacity limits with **network constraints**
- Enables **hub-to-hub trading** between ANY two zones (not just physical neighbors)
- Maximizes market efficiency by considering the entire interconnected AC grid

### Traditional ATC vs FBMC

| Aspect | Traditional ATC | Flow-Based Market Coupling (FBMC) |
|--------|----------------|-----------------------------------|
| **Capacity Model** | Border-to-border limits | Network-wide constraints (CNECs) |
| **Trading Allowed** | Only between physically connected zones | Between ANY two zones (hub-to-hub) |
| **Network Physics** | Simplified, ignores loop flows | Fully modeled via PTDFs |
| **Example** | FR can only trade with direct neighbors | FR can trade with HU despite no physical interconnector |
| **Optimization** | Sub-optimal (ignores network capacity) | Optimal (uses full network capacity) |

---

## 2. Core FBMC Concepts

### 2.1 MaxBEX (Maximum Bilateral Exchange)

**Definition**: Commercial hub-to-hub trading capacity between two zones

**Key Points**:
- MaxBEX ≠ Physical interconnector ratings
- MaxBEX = Result of optimization considering ALL network constraints
- Calculated for ALL zone pairs: 12 × 11 = 132 bidirectional combinations
- Includes both physical borders and virtual borders

**Physical Border Example** (DE→FR):
```
- Physical interconnector: 3,000 MW capacity
- MaxBEX value: 2,450 MW
- Why lower? Network constraints (CNECs) in DE and FR limit capacity
- DE→FR exchange affects transmission lines in both countries
```

**Virtual Border Example** (FR→HU):
```
- Physical interconnector: NONE (no direct FR-HU cable)
- MaxBEX value: 1,200 MW
- How is this possible? Power flows through AC grid via DE, AT, CZ
- FR exports 1,200 MW, HU imports 1,200 MW
- Physical reality: Power flows through intermediate countries' grids
```

### 2.2 CNECs (Critical Network Elements with Contingencies)

**Definition**: Transmission line + contingency scenarios that constrain power flows

**Structure**:
```
CNEC = Transmission line + "What if X fails?"
Example: "German DE_CZ_LINE_123 under contingency: Czech power plant outage"
```

**Key Metrics**:
- **RAM (Remaining Available Margin)**: How much flow capacity is left (MW)
- **Shadow Price**: Economic value of relaxing this constraint (€/MWh)
- **Presolved**: Boolean indicating if CNEC was binding (limiting)
- **Fmax**: Maximum allowed flow on this line (MW)

**Why CNECs Matter**:
- CNECs are the **physical constraints** that limit MaxBEX
- Each CNEC affects multiple borders simultaneously via PTDFs
- Top 50 CNECs account for ~80% of binding events

### 2.3 PTDFs (Power Transfer Distribution Factors)

**Definition**: Sensitivity coefficient showing how a zone's injection/withdrawal affects each CNEC

**Interpretation**:
```
PTDF_DE for a German CNEC = 0.45
→ If DE increases export by 1000 MW, this CNEC's flow increases by 450 MW

PTDF_FR for same CNEC = -0.22
→ If FR increases export by 1000 MW, this CNEC's flow decreases by 220 MW
```

**Why PTDFs Enable Virtual Borders**:
- FR→HU exchange has NO direct physical path
- But it affects CNECs in DE, AT, CZ via PTDFs
- PTDF_FR = +0.35, PTDF_HU = -0.28 for a German CNEC
- FR exports → increases German CNEC flow
- HU imports → decreases German CNEC flow
- Net effect: FR→HU exchange feasibility depends on German CNEC margin

**PTDF Properties**:
- Sum of all PTDFs ≈ 0 (Kirchhoff's law - flow conservation)
- High absolute PTDF = strong influence on that CNEC
- PTDFs are constants (depend only on network topology, not on flows)

---

## 3. How MaxBEX is Calculated

### 3.1 Optimization Problem

JAO solves this optimization problem daily:

```
Maximize: Σ (MaxBEX_ij) for all zone pairs (i→j)

Subject to:
1. For each CNEC k:
   Σ(PTDF_i^k × Net_Position_i) ≤ RAM_k  (Network constraint)

2. For each zone i:
   Σ(MaxBEX_ij) - Σ(MaxBEX_ji) = Net_Position_i  (Flow balance)

3. MaxBEX_ij ≥ 0  (Non-negative capacity)

Where:
- MaxBEX_ij = Capacity from zone i to zone j (WHAT WE FORECAST)
- PTDF_i^k = Zone i's PTDF for CNEC k
- RAM_k = Remaining Available Margin for CNEC k
- Net_Position_i = Net export from zone i
```

### 3.2 Why 132 Zone Pairs Exist

**FBMC Core Bidding Zones** (12 total):
- AT (Austria)
- BE (Belgium)
- CZ (Czech Republic)
- DE (Germany-Luxembourg)
- FR (France)
- HR (Croatia)
- HU (Hungary)
- NL (Netherlands)
- PL (Poland)
- RO (Romania)
- SI (Slovenia)
- SK (Slovakia)

**All Permutations**:
```
Total bidirectional pairs = 12 × 11 = 132

Examples:
- AT→BE, AT→CZ, AT→DE, ..., AT→SK  (11 directions from AT)
- BE→AT, BE→CZ, BE→DE, ..., BE→SK  (11 directions from BE)
- ...
- SK→AT, SK→BE, SK→CZ, ..., SK→SI  (11 directions from SK)
```

**Physical vs Virtual**:
- ~40-50 physical borders (zones with direct interconnectors)
- ~80-90 virtual borders (zones without direct interconnectors)

---

## 4. Network Physics: Power Flow Reality

### 4.1 AC Grid Fundamentals

**Key Principle**: Power flows through ALL available paths, not just the intended route

**Example**: DE→PL bilateral exchange
```
Intended:  DE → PL (direct interconnector)
Reality:   Power also flows through CZ and SK (parallel paths)
Result:    CZ and SK CNECs are affected, limiting DE→PL capacity
```

### 4.2 Loop Flows

**Definition**: Unintended power flows through neighboring countries

**FR→HU Exchange Example**:
```
Commercial transaction: FR exports 1000 MW, HU imports 1000 MW

Physical reality (power flow percentages):
- 0% flows directly (no FR-HU interconnector)
- 35% flows through DE grid (PTDF_DE = +0.35)
- 28% flows through AT grid (PTDF_AT = +0.28)
- 22% flows through CZ grid (PTDF_CZ = +0.22)
- 15% flows through other paths (SI, HR, SK)

Impact:
- German CNECs see +350 MW load (may become binding)
- Austrian CNECs see +280 MW load (may become binding)
- Czech CNECs see +220 MW load (may become binding)
- MaxBEX(FR→HU) limited by most constraining CNEC
```

### 4.3 Why Virtual Borders Have Lower Capacity

**Physical Border** (DE→FR):
- Direct interconnector: 3,000 MW rating
- MaxBEX: Often 2,200-2,800 MW
- Reason: Local CNECs in DE and FR

**Virtual Border** (FR→HU):
- Direct interconnector: None
- MaxBEX: Often 800-1,500 MW
- Reason: Power flows through DE, AT, CZ (affects many CNECs)
- More CNECs affected → more constraints → lower capacity

---

## 5. FBMC Data Series Relationships

### 5.1 Data Hierarchy

```
MaxBEX (TARGET)
    ↑ Result of optimization
CNECs + PTDFs + RAM
    ↑ Network constraints
LTN (Long-Term Nominations)
    ↑ Pre-allocated capacity
Net Positions (Min/Max)
    ↑ Zone-level limits
Planned Outages
    ↑ Reduce RAM availability
```

### 5.2 Causal Chain

```
1. Planned Outages → Reduce RAM for affected CNECs
2. Reduced RAM → Tighter CNEC constraints
3. Tighter constraints + PTDFs → Limit MaxBEX
4. MaxBEX optimization → 132 capacity values
```

### 5.3 What We Forecast

**Forecasting Task**: Predict MaxBEX for all 132 zone pairs, D+1 to D+14 horizon

**Input Features** (~1,735 features):
- Historical MaxBEX (past 21 days)
- CNEC binding patterns (200 CNECs × 8 features)
- PTDFs (200 CNECs × 12 zones, aggregated)
- RAM time series (200 CNECs)
- Shadow prices (200 CNECs)
- Planned outages (200 CNECs, future covariates)
- Weather forecasts (52 grid points, future covariates)
- LTN allocations (known in advance)
- Net positions (min/max bounds)

**Output**: MaxBEX forecast for 132 zone pairs × 336 hours (14 days)

**Evaluation Metric**: MAE (Mean Absolute Error) in MW, aggregated across all borders

---

## 6. Why This Matters for Forecasting

### 6.1 Multivariate Dependencies

**Key Insight**: You cannot forecast MaxBEX(DE→FR) independently of MaxBEX(FR→DE) or MaxBEX(AT→CZ)

**Reason**: All borders share the same CNEC constraints via PTDFs

**Example**:
```
If German CNEC "DE_NORTH_LINE_5" is binding with RAM = 200 MW:
- MaxBEX(DE→FR) is limited
- MaxBEX(DE→NL) is limited
- MaxBEX(PL→DE) is limited
- MaxBEX(FR→CZ) is affected (loop flows through DE)

All of these borders compete for the same 200 MW of remaining margin!
```

### 6.2 Network Constraints Drive Capacity

**Not driven by**:
- Historical MaxBEX averages (too simplistic)
- Physical interconnector ratings (not the binding constraint)
- Bilateral flow patterns (ignores network physics)

**Driven by**:
- Which CNECs are binding (top 50 account for ~80% of binding events)
- How much RAM is available (affected by outages, weather, generation patterns)
- PTDF patterns (which zones affect which CNECs)
- LTN pre-allocations (reduce available capacity)

### 6.3 Why Chronos 2 is Well-Suited

**Chronos 2 Strengths** (for zero-shot FBMC forecasting):
1. **Multivariate context**: Sees all 132 borders + 1,735 features simultaneously
2. **Temporal patterns**: Learns hourly, daily, weekly cycles in CNEC binding
3. **Attention mechanism**: Focuses on top binding CNECs for each forecast horizon
4. **Pre-trained on diverse time series**: Generalizes to electricity network physics
5. **Zero-shot**: No fine-tuning needed for MVP (target: 134 MW MAE)

**Why CNEC features are critical**:
- CNECs = physical constraints that determine MaxBEX
- Without CNEC context, model would miss network bottlenecks
- Top 50 CNECs × 20 features = 1,000 features capturing network state

---

## 7. Practical Example Walkthrough

### Scenario: Forecasting DE→FR MaxBEX for Tomorrow (D+1)

**Step 1: Gather Historical Context** (21 days lookback)
```
- MaxBEX(DE→FR) past 21 days: avg 2,450 MW, std 320 MW
- Top 10 binding CNECs affecting DE→FR:
  * German CNEC "DE_SOUTH_1": Binding 60% of time, avg shadow price 45 €/MWh
  * French CNEC "FR_EAST_3": Binding 40% of time, avg shadow price 38 €/MWh
- Historical RAM for these CNECs: trending down (more congestion)
- Recent outages: None planned for DE or FR
```

**Step 2: Future Covariates** (D+1 to D+14)
```
- Planned outages: French line "FR_EAST_3" scheduled maintenance D+3 to D+7
  → Expect lower MaxBEX(DE→FR) during this period
- Weather forecast: High winds in DE (high renewables) → Higher DE export pressure
- LTN allocations: 400 MW pre-allocated for long-term contracts
```

**Step 3: CNEC Impact Analysis**
```
German CNEC "DE_SOUTH_1":
- PTDF_DE = +0.42 (DE export increases flow)
- PTDF_FR = -0.35 (FR import decreases flow)
- Current RAM = 450 MW
- DE→FR exchange adds: 0.42 × 1000 - 0.35 × (-1000) = 770 MW to CNEC flow
- Therefore: MaxBEX(DE→FR) ≤ 450 / 0.77 = 584 MW (if this CNEC is limiting)

French CNEC "FR_EAST_3":
- PTDF_DE = +0.38
- PTDF_FR = -0.40
- Current RAM = 600 MW
- DE→FR exchange adds: 0.38 × 1000 - 0.40 × (-1000) = 780 MW to CNEC flow
- Therefore: MaxBEX(DE→FR) ≤ 600 / 0.78 = 769 MW

Most constraining: German CNEC → MaxBEX(DE→FR) ≈ 584 MW
```

**Step 4: Chronos 2 Inference**
```
Input features (1,735-dim vector):
- Historical MaxBEX context (132 borders × 21 days)
- CNEC features (200 CNECs × 8 metrics)
- PTDF aggregates (132 borders × PTDF sums)
- Future outages (200 CNECs × 14 days)
- Weather forecasts (52 grid points × 14 days)

Chronos 2 output:
- MaxBEX(DE→FR) forecast: 620 MW (D+1, hour 12:00)
- Confidence: Model attention focused on "DE_SOUTH_1" CNEC
- Interpretation: Slightly above CNEC-derived limit due to other borders absorbing some CNEC load
```

**Step 5: Validation**
```
Actual MaxBEX(DE→FR) = 605 MW
Forecast = 620 MW
Error = 15 MW (within 134 MW target MAE)
```

---

## 8. Common Misconceptions

### Misconception 1: "MaxBEX = Interconnector Capacity"**Wrong**: MaxBEX is often much lower than interconnector ratings
✅ **Correct**: MaxBEX is the result of network-wide optimization considering all CNECs

### Misconception 2: "Virtual borders have zero capacity"**Wrong**: Virtual borders can have significant capacity (e.g., FR→HU: 800-1,500 MW)
✅ **Correct**: Virtual borders represent feasible commercial exchanges via AC grid network

### Misconception 3: "Each border can be forecasted independently"**Wrong**: All borders are coupled via shared CNEC constraints
✅ **Correct**: Multivariate forecasting is essential (Chronos 2 sees all 132 borders simultaneously)

### Misconception 4: "PTDFs change with power flows"**Wrong**: PTDFs are NOT flow-dependent
✅ **Correct**: PTDFs are constants determined by network topology (linearity assumption in DC power flow)

### Misconception 5: "Only physical borders matter for trading"**Wrong**: FBMC enables trading between ANY zone pairs
✅ **Correct**: All 132 zone-pair combinations have commercial capacity via grid network

---

## 9. References and Further Reading

### Official JAO Documentation
- JAO Publication Tool User Guide: [https://publicationtool.jao.eu/help](https://publicationtool.jao.eu/help)
- JAO FBMC Methodology: Available via JAO website
- Core FBMC Practitioners Guide: `doc/practitioners_guide.pdf`

### ENTSO-E Resources
- ENTSO-E Transparency Platform: [https://transparency.entsoe.eu/](https://transparency.entsoe.eu/)
- FBMC Overview: ENTSO-E publications on flow-based market coupling

### Academic References
- Ehrenmann, A., & Neuhoff, K. (2009). A comparison of electricity market designs in networks. *Operations Research*, 57(2), 274-286.
- Pellini, E. (2012). Measuring the impact of market coupling on the Italian electricity market. *Energy Policy*, 48, 322-333.

### Project Documentation
- `doc/JAO_Data_Treatment_Plan.md`: Complete data collection and feature extraction guide
- `doc/FBMC_Flow_Forecasting_MVP_ZERO_SHOT_PLAN.md`: 5-day MVP implementation plan
- `notebooks/01_data_exploration.py`: Interactive data exploration with sample data

---

## 10. Summary: Key Takeaways

1. **MaxBEX ≠ Physical Capacity**: MaxBEX is a commercial metric derived from network optimization
2. **132 Zone Pairs**: All 12 × 11 bidirectional combinations exist (physical + virtual borders)
3. **CNECs Are Key**: Network constraints (CNECs) determine MaxBEX via optimization
4. **PTDFs Enable Virtual Borders**: Power flows through AC grid network affect distant CNECs
5. **Multivariate Forecasting Required**: All borders share CNEC constraints via PTDFs
6. **Network Physics Matters**: Loop flows, congestion patterns, and outages drive capacity
7. **Chronos 2 Zero-Shot Approach**: Pre-trained model leverages multivariate context without fine-tuning

---

**Document Version**: 1.0
**Created**: 2025-11-03
**Project**: FBMC Flow Forecasting MVP (Zero-Shot)
**Purpose**: Comprehensive reference for understanding FBMC methodology and MaxBEX forecasting