Spaces:
Runtime error
Runtime error
button added
Browse files
app.py
CHANGED
|
@@ -59,6 +59,7 @@ special_threshold = st.sidebar.number_input(
|
|
| 59 |
st.sidebar.success(
|
| 60 |
"The 'distances' score indicates the proximity of your question to our database questions (lower is better). The 'ai_judge' ranks the similarity between user's question and database answers independently (higher is better)."
|
| 61 |
)
|
|
|
|
| 62 |
clear_button = st.sidebar.button("Clear Conversation", key="clear")
|
| 63 |
if clear_button:
|
| 64 |
st.session_state.messages = []
|
|
@@ -114,99 +115,100 @@ with st.spinner("Loading, please be patient with us ... π"):
|
|
| 114 |
|
| 115 |
|
| 116 |
# React to user input
|
| 117 |
-
if
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
# special_threshold = st.sidebar.slider('How old are you?', 0, 0.6, 0.1) # 0.3
|
| 140 |
-
filtered_ref = ref[ref["distances"] < special_threshold]
|
| 141 |
-
if filtered_ref.shape[0] > 0:
|
| 142 |
-
st.success("There are highly relevant information in our database.")
|
| 143 |
-
ref_from_db_search = filtered_ref["answers"].str.cat(sep=" ")
|
| 144 |
-
final_ref = filtered_ref
|
| 145 |
-
else:
|
| 146 |
-
st.warning(
|
| 147 |
-
"The database may not have relevant information to help your question so please be aware of hallucinations."
|
| 148 |
)
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
begin_t = time.time()
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
end_t = time.time()
|
| 157 |
-
st.success(f"
|
| 158 |
-
except:
|
| 159 |
-
st.warning("Sorry, the inference endpoint is temporarily down. π")
|
| 160 |
-
llm_response = "NA."
|
| 161 |
-
else:
|
| 162 |
-
st.warning(
|
| 163 |
-
"Apologies! We are in the progress of fine-tune the model, so it's currently unavailable. βοΈ"
|
| 164 |
-
)
|
| 165 |
-
llm_response = "NA"
|
| 166 |
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
final_ref = final_ref.reset_index()
|
| 170 |
|
| 171 |
-
|
| 172 |
-
if run_ai_judge == "Yes":
|
| 173 |
-
independent_ai_judge_score = []
|
| 174 |
-
begin_t = time.time()
|
| 175 |
-
for i in range(final_ref.shape[0]):
|
| 176 |
-
this_content = final_ref["answers"][i]
|
| 177 |
-
if len(this_content) > 3:
|
| 178 |
-
arr1 = openai_text_embedding(question)
|
| 179 |
-
arr2 = openai_text_embedding(this_content)
|
| 180 |
-
# this_score = calculate_sts_openai_score(question, this_content)
|
| 181 |
-
this_score = quantized_influence(arr1, arr2)
|
| 182 |
-
else:
|
| 183 |
-
this_score = 0
|
| 184 |
-
independent_ai_judge_score.append(this_score)
|
| 185 |
-
|
| 186 |
-
final_ref["ai_judge"] = independent_ai_judge_score
|
| 187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
end_t = time.time()
|
| 189 |
-
st.success(f"
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
answer = call_chatgpt(engineered_prompt)
|
| 201 |
-
end_t = time.time()
|
| 202 |
-
st.success(f"Final API Call. | Time: {end_t - begin_t} sec")
|
| 203 |
-
response = answer
|
| 204 |
-
|
| 205 |
-
# Display assistant response in chat message container
|
| 206 |
-
with st.chat_message("assistant"):
|
| 207 |
-
with st.spinner("Wait for it..."):
|
| 208 |
-
st.markdown(response)
|
| 209 |
-
with st.expander("See reference:"):
|
| 210 |
-
st.table(final_ref)
|
| 211 |
-
# Add assistant response to chat history
|
| 212 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
|
| 59 |
st.sidebar.success(
|
| 60 |
"The 'distances' score indicates the proximity of your question to our database questions (lower is better). The 'ai_judge' ranks the similarity between user's question and database answers independently (higher is better)."
|
| 61 |
)
|
| 62 |
+
submit_button = st.sidebar.button("Submit", type="primary")
|
| 63 |
clear_button = st.sidebar.button("Clear Conversation", key="clear")
|
| 64 |
if clear_button:
|
| 65 |
st.session_state.messages = []
|
|
|
|
| 115 |
|
| 116 |
|
| 117 |
# React to user input
|
| 118 |
+
if submit_button:
|
| 119 |
+
if prompt := st.chat_input(initial_input):
|
| 120 |
+
with st.spinner("Loading, please be patient with us ... π"):
|
| 121 |
+
# Display user message in chat message container
|
| 122 |
+
st.chat_message("user").markdown(prompt)
|
| 123 |
+
# Add user message to chat history
|
| 124 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 125 |
+
|
| 126 |
+
question = prompt
|
| 127 |
+
begin_t = time.time()
|
| 128 |
+
results = collection.query(query_texts=question, n_results=5)
|
| 129 |
+
end_t = time.time()
|
| 130 |
+
st.success(f"Query answser. | Time: {end_t - begin_t} sec")
|
| 131 |
+
idx = results["ids"][0]
|
| 132 |
+
idx = [int(i) for i in idx]
|
| 133 |
+
ref = pd.DataFrame(
|
| 134 |
+
{
|
| 135 |
+
"idx": idx,
|
| 136 |
+
"questions": [dataset["train"]["questions"][i] for i in idx],
|
| 137 |
+
"answers": [dataset["train"]["answers"][i] for i in idx],
|
| 138 |
+
"distances": results["distances"][0],
|
| 139 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
)
|
| 141 |
+
# special_threshold = st.sidebar.slider('How old are you?', 0, 0.6, 0.1) # 0.3
|
| 142 |
+
filtered_ref = ref[ref["distances"] < special_threshold]
|
| 143 |
+
if filtered_ref.shape[0] > 0:
|
| 144 |
+
st.success("There are highly relevant information in our database.")
|
| 145 |
+
ref_from_db_search = filtered_ref["answers"].str.cat(sep=" ")
|
| 146 |
+
final_ref = filtered_ref
|
| 147 |
+
else:
|
| 148 |
+
st.warning(
|
| 149 |
+
"The database may not have relevant information to help your question so please be aware of hallucinations."
|
| 150 |
+
)
|
| 151 |
+
ref_from_db_search = ref["answers"].str.cat(sep=" ")
|
| 152 |
+
final_ref = ref
|
| 153 |
+
|
| 154 |
+
if option == "YSA":
|
| 155 |
+
try:
|
| 156 |
+
begin_t = time.time()
|
| 157 |
+
llm_response = llama2_7b_ysa(question)
|
| 158 |
+
end_t = time.time()
|
| 159 |
+
st.success(f"Running LLM. | Time: {end_t - begin_t} sec")
|
| 160 |
+
except:
|
| 161 |
+
st.warning("Sorry, the inference endpoint is temporarily down. π")
|
| 162 |
+
llm_response = "NA."
|
| 163 |
+
else:
|
| 164 |
+
st.warning(
|
| 165 |
+
"Apologies! We are in the progress of fine-tune the model, so it's currently unavailable. βοΈ"
|
| 166 |
+
)
|
| 167 |
+
llm_response = "NA"
|
| 168 |
+
|
| 169 |
+
finetuned_llm_guess = ["from_llm", question, llm_response, 0]
|
| 170 |
+
final_ref.loc[-1] = finetuned_llm_guess
|
| 171 |
+
final_ref = final_ref.reset_index()
|
| 172 |
+
|
| 173 |
+
# add ai judge as additional rating
|
| 174 |
+
if run_ai_judge == "Yes":
|
| 175 |
+
independent_ai_judge_score = []
|
| 176 |
begin_t = time.time()
|
| 177 |
+
for i in range(final_ref.shape[0]):
|
| 178 |
+
this_content = final_ref["answers"][i]
|
| 179 |
+
if len(this_content) > 3:
|
| 180 |
+
arr1 = openai_text_embedding(question)
|
| 181 |
+
arr2 = openai_text_embedding(this_content)
|
| 182 |
+
# this_score = calculate_sts_openai_score(question, this_content)
|
| 183 |
+
this_score = quantized_influence(arr1, arr2)
|
| 184 |
+
else:
|
| 185 |
+
this_score = 0
|
| 186 |
+
independent_ai_judge_score.append(this_score)
|
| 187 |
+
|
| 188 |
+
final_ref["ai_judge"] = independent_ai_judge_score
|
| 189 |
+
|
| 190 |
end_t = time.time()
|
| 191 |
+
st.success(f"Using AI Judge. | Time: {end_t - begin_t} sec")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
+
engineered_prompt = f"""
|
| 194 |
+
Based on the context: {ref_from_db_search}
|
|
|
|
| 195 |
|
| 196 |
+
answer the user question: {question}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
+
Answer the question directly (don't say "based on the context, ...")
|
| 199 |
+
"""
|
| 200 |
+
|
| 201 |
+
begin_t = time.time()
|
| 202 |
+
answer = call_chatgpt(engineered_prompt)
|
| 203 |
end_t = time.time()
|
| 204 |
+
st.success(f"Final API Call. | Time: {end_t - begin_t} sec")
|
| 205 |
+
response = answer
|
| 206 |
+
|
| 207 |
+
# Display assistant response in chat message container
|
| 208 |
+
with st.chat_message("assistant"):
|
| 209 |
+
with st.spinner("Wait for it..."):
|
| 210 |
+
st.markdown(response)
|
| 211 |
+
with st.expander("See reference:"):
|
| 212 |
+
st.table(final_ref)
|
| 213 |
+
# Add assistant response to chat history
|
| 214 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|