Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import AutoImageProcessor, DetaForObjectDetection | |
| from PIL import Image | |
| import requests | |
| st.title("Object Detection") | |
| # Sidebar instructions | |
| st.sidebar.header("Instructions") | |
| st.sidebar.write("1. Enter an image URL in the text input below.") | |
| st.sidebar.write("2. Click the 'Detect Objects' button to process the image.") | |
| # Image URL input | |
| image_url = st.text_input("Enter image URL:", "http://images.cocodataset.org/val2017/000000039769.jpg") | |
| if st.button("Detect Objects"): | |
| try: | |
| # Load the image | |
| image = Image.open(requests.get(image_url, stream=True).raw) | |
| # Initialize the image processor and model | |
| image_processor = AutoImageProcessor.from_pretrained("jozhang97/deta-swin-large") | |
| model = DetaForObjectDetection.from_pretrained("jozhang97/deta-swin-large") | |
| # Process the image | |
| inputs = image_processor(images=image, return_tensors="pt") | |
| outputs = model(**inputs) | |
| # Convert outputs to Pascal VOC format | |
| target_sizes = torch.tensor([image.size[::-1]]) | |
| results = image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[0] | |
| # Display the image and detected objects | |
| st.image(image, use_column_width=True) | |
| for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
| box = [round(i, 2) for i in box.tolist()] | |
| st.write(f"Detected {model.config.id2label[label.item()]} with confidence {round(score.item(), 3)} at location {box}") | |
| except: | |
| st.write("Error: Unable to process the image. Please check the URL and try again.") |