Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python3 | |
| import argparse | |
| import os | |
| import time | |
| import numpy as np | |
| import nvidia_smi | |
| import psutil | |
| import torch | |
| from iopaint.model_manager import ModelManager | |
| from iopaint.schema import InpaintRequest, HDStrategy, SDSampler | |
| try: | |
| torch._C._jit_override_can_fuse_on_cpu(False) | |
| torch._C._jit_override_can_fuse_on_gpu(False) | |
| torch._C._jit_set_texpr_fuser_enabled(False) | |
| torch._C._jit_set_nvfuser_enabled(False) | |
| except: | |
| pass | |
| NUM_THREADS = str(4) | |
| os.environ["OMP_NUM_THREADS"] = NUM_THREADS | |
| os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS | |
| os.environ["MKL_NUM_THREADS"] = NUM_THREADS | |
| os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS | |
| os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS | |
| if os.environ.get("CACHE_DIR"): | |
| os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"] | |
| def run_model(model, size): | |
| # RGB | |
| image = np.random.randint(0, 256, (size[0], size[1], 3)).astype(np.uint8) | |
| mask = np.random.randint(0, 255, size).astype(np.uint8) | |
| config = InpaintRequest( | |
| ldm_steps=2, | |
| hd_strategy=HDStrategy.ORIGINAL, | |
| hd_strategy_crop_margin=128, | |
| hd_strategy_crop_trigger_size=128, | |
| hd_strategy_resize_limit=128, | |
| prompt="a fox is sitting on a bench", | |
| sd_steps=5, | |
| sd_sampler=SDSampler.ddim, | |
| ) | |
| model(image, mask, config) | |
| def benchmark(model, times: int, empty_cache: bool): | |
| sizes = [(512, 512)] | |
| nvidia_smi.nvmlInit() | |
| device_id = 0 | |
| handle = nvidia_smi.nvmlDeviceGetHandleByIndex(device_id) | |
| def format(metrics): | |
| return f"{np.mean(metrics):.2f} ± {np.std(metrics):.2f}" | |
| process = psutil.Process(os.getpid()) | |
| # 每个 size 给出显存和内存占用的指标 | |
| for size in sizes: | |
| torch.cuda.empty_cache() | |
| time_metrics = [] | |
| cpu_metrics = [] | |
| memory_metrics = [] | |
| gpu_memory_metrics = [] | |
| for _ in range(times): | |
| start = time.time() | |
| run_model(model, size) | |
| torch.cuda.synchronize() | |
| # cpu_metrics.append(process.cpu_percent()) | |
| time_metrics.append((time.time() - start) * 1000) | |
| memory_metrics.append(process.memory_info().rss / 1024 / 1024) | |
| gpu_memory_metrics.append( | |
| nvidia_smi.nvmlDeviceGetMemoryInfo(handle).used / 1024 / 1024 | |
| ) | |
| print(f"size: {size}".center(80, "-")) | |
| # print(f"cpu: {format(cpu_metrics)}") | |
| print(f"latency: {format(time_metrics)}ms") | |
| print(f"memory: {format(memory_metrics)} MB") | |
| print(f"gpu memory: {format(gpu_memory_metrics)} MB") | |
| nvidia_smi.nvmlShutdown() | |
| def get_args_parser(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--name") | |
| parser.add_argument("--device", default="cuda", type=str) | |
| parser.add_argument("--times", default=10, type=int) | |
| parser.add_argument("--empty-cache", action="store_true") | |
| return parser.parse_args() | |
| if __name__ == "__main__": | |
| args = get_args_parser() | |
| device = torch.device(args.device) | |
| model = ModelManager( | |
| name=args.name, | |
| device=device, | |
| disable_nsfw=True, | |
| sd_cpu_textencoder=True, | |
| ) | |
| benchmark(model, args.times, args.empty_cache) | |