File size: 16,209 Bytes
05dfabe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
724cc21
 
05dfabe
 
 
 
 
 
724cc21
 
 
 
 
05dfabe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
724cc21
05dfabe
 
724cc21
05dfabe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
724cc21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import gradio as gr
import numpy as np
import random
import torch
import spaces

from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3

import math
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

import os
from gradio_client import Client, handle_file
import tempfile
from typing import Optional, Tuple, Any


# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = QwenImageEditPlusPipeline.from_pretrained(
    "Qwen/Qwen-Image-Edit-2509",
    transformer=QwenImageTransformer2DModel.from_pretrained(
        "linoyts/Qwen-Image-Edit-Rapid-AIO",
        subfolder='transformer',
        torch_dtype=dtype,
        device_map='cuda'
    ),
    torch_dtype=dtype
).to(device)

pipe.load_lora_weights(
    "dx8152/Qwen-Edit-2509-Multiple-angles",
    weight_name="镜头转换.safetensors",
    adapter_name="angles"
)


pipe.set_adapters(["angles"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["angles"], lora_scale=1.25)
pipe.unload_lora_weights()

pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())

optimize_pipeline_(
    pipe,
    image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))],
    prompt="prompt"
)

MAX_SEED = np.iinfo(np.int32).max


def _generate_video_segment(
    input_image_path: str,
    output_image_path: str,
    prompt: str,
    request: gr.Request
) -> str:
    """
    Generate a single video segment between two frames by calling an external
    Wan 2.2 image-to-video service hosted on Hugging Face Spaces.
    """
    x_ip_token = request.headers['x-ip-token']
    video_client = Client(
        "multimodalart/wan-2-2-first-last-frame",
        headers={"x-ip-token": x_ip_token}
    )
    
    # استدعاء التوقع
    result = video_client.predict(
        start_image_pil=handle_file(input_image_path),
        end_image_pil=handle_file(output_image_path),
        prompt=prompt,
        api_name="/generate_video",
    )
    
    # --- FIX START ---
    # الخطأ كان هنا: result[0] هو مسار الفيديو مباشرة كنص، وليس قاموساً
    return result[0]
    # --- FIX END ---


def build_camera_prompt(
    rotate_deg: float = 0.0,
    move_forward: float = 0.0,
    vertical_tilt: float = 0.0,
    wideangle: bool = False
) -> str:
    """
    Build a camera movement prompt based on the chosen controls.
    """
    prompt_parts = []

    # Rotation
    if rotate_deg != 0:
        direction = "left" if rotate_deg > 0 else "right"
        if direction == "left":
            prompt_parts.append(
                f"将镜头向左旋转{abs(rotate_deg)}度 Rotate the camera {abs(rotate_deg)} degrees to the left."
            )
        else:
            prompt_parts.append(
                f"将镜头向右旋转{abs(rotate_deg)}度 Rotate the camera {abs(rotate_deg)} degrees to the right."
            )

    # Move forward / close-up
    if move_forward > 5:
        prompt_parts.append("将镜头转为特写镜头 Turn the camera to a close-up.")
    elif move_forward >= 1:
        prompt_parts.append("将镜头向前移动 Move the camera forward.")

    # Vertical tilt
    if vertical_tilt <= -1:
        prompt_parts.append("将相机转向鸟瞰视角 Turn the camera to a bird's-eye view.")
    elif vertical_tilt >= 1:
        prompt_parts.append("将相机切换到仰视视角 Turn the camera to a worm's-eye view.")

    # Lens option
    if wideangle:
        prompt_parts.append(" 将镜头转为广角镜头 Turn the camera to a wide-angle lens.")

    final_prompt = " ".join(prompt_parts).strip()
    return final_prompt if final_prompt else "no camera movement"


@spaces.GPU
def infer_camera_edit(
    image: Optional[Image.Image] = None,
    rotate_deg: float = 0.0,
    move_forward: float = 0.0,
    vertical_tilt: float = 0.0,
    wideangle: bool = False,
    seed: int = 0,
    randomize_seed: bool = True,
    true_guidance_scale: float = 1.0,
    num_inference_steps: int = 4,
    height: Optional[int] = None,
    width: Optional[int] = None,
    prev_output: Optional[Image.Image] = None,
) -> Tuple[Image.Image, int, str]:
    """
    Edit the camera angles/view of an image with Qwen Image Edit 2509.
    """
    progress = gr.Progress(track_tqdm=True)
     
    prompt = build_camera_prompt(rotate_deg, move_forward, vertical_tilt, wideangle)
    print(f"Generated Prompt: {prompt}")

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)

    # Choose input image (prefer uploaded, else last output)
    pil_images = []
    if image is not None:
        if isinstance(image, Image.Image):
            pil_images.append(image.convert("RGB"))
        elif hasattr(image, "name"):
            pil_images.append(Image.open(image.name).convert("RGB"))
    elif prev_output:
        pil_images.append(prev_output.convert("RGB"))

    if len(pil_images) == 0:
        raise gr.Error("Please upload an image first.")

    if prompt == "no camera movement":
        return image, seed, prompt

    result = pipe(
        image=pil_images,
        prompt=prompt,
        height=height if height != 0 else None,
        width=width if width != 0 else None,
        num_inference_steps=num_inference_steps,
        generator=generator,
        true_cfg_scale=true_guidance_scale,
        num_images_per_prompt=1,
    ).images[0]

    return result, seed, prompt


def create_video_between_images(
    input_image: Optional[Image.Image],
    output_image: Optional[np.ndarray],
    prompt: str,
    request: gr.Request
) -> str:
    """
    Create a short transition video between the input and output images via the 
    Wan 2.2 first-last-frame Space.
    """
    if input_image is None or output_image is None:
        raise gr.Error("Both input and output images are required to create a video.")

    try:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
            input_image.save(tmp.name)
            input_image_path = tmp.name

        output_pil = Image.fromarray(output_image.astype('uint8'))
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
            output_pil.save(tmp.name)
            output_image_path = tmp.name

        video_path = _generate_video_segment(
            input_image_path,
            output_image_path,
            prompt if prompt else "Camera movement transformation",
            request
        )
        return video_path
    except Exception as e:
        raise gr.Error(f"Video generation failed: {e}")


# --- UI ---
css = '''#col-container { max-width: 800px; margin: 0 auto; }
.dark .progress-text{color: white !important}
#examples{max-width: 800px; margin: 0 auto; }'''


def reset_all() -> list:
    """
    Reset all camera control knobs and flags to their default values.
    """
    return [0, 0, 0, 0, False, True]


def end_reset() -> bool:
    return False


def update_dimensions_on_upload(
    image: Optional[Image.Image]
) -> Tuple[int, int]:
    """
    Compute recommended (width, height) for the output resolution when an
    image is uploaded while preserveing the aspect ratio.
    """
    if image is None:
        return 1024, 1024

    original_width, original_height = image.size

    if original_width > original_height:
        new_width = 1024
        aspect_ratio = original_height / original_width
        new_height = int(new_width * aspect_ratio)
    else:
        new_height = 1024
        aspect_ratio = original_width / original_height
        new_width = int(new_height * aspect_ratio)

    # Ensure dimensions are multiples of 8
    new_width = (new_width // 8) * 8
    new_height = (new_height // 8) * 8

    return new_width, new_height


with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("## 🎬 Qwen Image Edit — Camera Angle Control")
        gr.Markdown("""
            Qwen Image Edit 2509 for Camera Control ✨ 
            Using [dx8152's Qwen-Edit-2509-Multiple-angles LoRA](https://huggingface.co/dx8152/Qwen-Edit-2509-Multiple-angles) and [Phr00t/Qwen-Image-Edit-Rapid-AIO](https://huggingface.co/Phr00t/Qwen-Image-Edit-Rapid-AIO/tree/main) for 4-step inference 💨
            """
        )

        with gr.Row():
            with gr.Column():
                image = gr.Image(label="Input Image", type="pil")
                prev_output = gr.Image(value=None, visible=False)
                is_reset = gr.Checkbox(value=False, visible=False)

                with gr.Tab("Camera Controls"):
                    rotate_deg = gr.Slider(
                        label="Rotate Right-Left (degrees °)",
                        minimum=-90,
                        maximum=90,
                        step=45,
                        value=0
                    )
                    move_forward = gr.Slider(
                        label="Move Forward → Close-Up",
                        minimum=0,
                        maximum=10,
                        step=5,
                        value=0
                    )
                    vertical_tilt = gr.Slider(
                        label="Vertical Angle (Bird ↔ Worm)",
                        minimum=-1,
                        maximum=1,
                        step=1,
                        value=0
                    )
                    wideangle = gr.Checkbox(label="Wide-Angle Lens", value=False)
                with gr.Row():
                    reset_btn = gr.Button("Reset")
                    run_btn = gr.Button("Generate", variant="primary")

                with gr.Accordion("Advanced Settings", open=False):
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=0
                    )
                    randomize_seed = gr.Checkbox(
                        label="Randomize Seed",
                        value=True
                    )
                    true_guidance_scale = gr.Slider(
                        label="True Guidance Scale",
                        minimum=1.0,
                        maximum=10.0,
                        step=0.1,
                        value=1.0
                    )
                    num_inference_steps = gr.Slider(
                        label="Inference Steps",
                        minimum=1,
                        maximum=40,
                        step=1,
                        value=4
                    )
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=2048,
                        step=8,
                        value=1024
                    )
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=2048,
                        step=8,
                        value=1024
                    )

            with gr.Column():
                result = gr.Image(label="Output Image", interactive=False)
                prompt_preview = gr.Textbox(label="Processed Prompt", interactive=False)
                create_video_button = gr.Button(
                    "🎥 Create Video Between Images",
                    variant="secondary",
                    visible=False
                )
                with gr.Group(visible=False) as video_group:
                    video_output = gr.Video(
                        label="Generated Video",
                        show_download_button=True,
                        autoplay=True
                    )

    inputs = [
        image, rotate_deg, move_forward,
        vertical_tilt, wideangle,
        seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output
    ]
    outputs = [result, seed, prompt_preview]

    # Reset behavior
    reset_btn.click(
        fn=reset_all,
        inputs=None,
        outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset],
        queue=False
    ).then(fn=end_reset, inputs=None, outputs=[is_reset], queue=False)

    # Manual generation with video button visibility control
    def infer_and_show_video_button(*args: Any):
        result_img, result_seed, result_prompt = infer_camera_edit(*args)
        # Show video button if we have both input and output images
        show_button = args[0] is not None and result_img is not None
        return result_img, result_seed, result_prompt, gr.update(visible=show_button)

    run_event = run_btn.click(
        fn=infer_and_show_video_button,
        inputs=inputs,
        outputs=outputs + [create_video_button]
    )

    # Video creation
    create_video_button.click(
        fn=lambda: gr.update(visible=True),
        outputs=[video_group],
        api_name=False
    ).then(
        fn=create_video_between_images,
        inputs=[image, result, prompt_preview],
        outputs=[video_output],
        api_name=False
    )

    # Examples
    gr.Examples(
        examples=[
            ["tool_of_the_sea.png", 90, 0, 0, False, 0, True, 1.0, 4, 568, 1024],
            ["monkey.jpg", -90, 0, 0, False, 0, True, 1.0, 4, 704, 1024],
            ["metropolis.jpg", 0, 0, -1, False, 0, True, 1.0, 4, 816, 1024],
            ["disaster_girl.jpg", -45, 0, 1, False, 0, True, 1.0, 4, 768, 1024],
            ["grumpy.png", 90, 0, 1, False, 0, True, 1.0, 4, 576, 1024]
        ],
        inputs=[
            image, rotate_deg, move_forward,
            vertical_tilt, wideangle,
            seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width
        ],
        outputs=outputs,
        fn=infer_camera_edit,
        cache_examples="lazy",
        elem_id="examples"
    )

    # Image upload triggers dimension update and control reset
    image.upload(
        fn=update_dimensions_on_upload,
        inputs=[image],
        outputs=[width, height]
    ).then(
        fn=reset_all,
        inputs=None,
        outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset],
        queue=False
    ).then(
        fn=end_reset,
        inputs=None,
        outputs=[is_reset],
        queue=False
    )

    # Live updates
    def maybe_infer(
        is_reset: bool,
        progress: gr.Progress = gr.Progress(track_tqdm=True),
        *args: Any
    ):
        if is_reset:
            return gr.update(), gr.update(), gr.update(), gr.update()
        else:
            result_img, result_seed, result_prompt = infer_camera_edit(*args)
            # Show video button if we have both input and output
            show_button = args[0] is not None and result_img is not None
            return result_img, result_seed, result_prompt, gr.update(visible=show_button)

    control_inputs = [
        image, rotate_deg, move_forward,
        vertical_tilt, wideangle,
        seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output
    ]
    control_inputs_with_flag = [is_reset] + control_inputs

    for control in [rotate_deg, move_forward, vertical_tilt]:
        control.release(
            fn=maybe_infer,
            inputs=control_inputs_with_flag,
            outputs=outputs + [create_video_button]
        )

    wideangle.input(
        fn=maybe_infer,
        inputs=control_inputs_with_flag,
        outputs=outputs + [create_video_button]
    )

    run_event.then(lambda img, *_: img, inputs=[result], outputs=[prev_output])

    gr.api(infer_camera_edit, api_name="infer_edit_camera_angles")
    gr.api(create_video_between_images, api_name="create_video_between_images")

demo.launch(mcp_server=True, show_api=True)