Spaces:
Sleeping
Sleeping
File size: 13,647 Bytes
d939bae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import uvicorn
from fastapi import FastAPI, HTTPException, UploadFile, File, Form
from pydantic import BaseModel, Field
from transformers import pipeline
import torch
import os
import json
import httpx
import shutil
import whisper
import librosa
import numpy as np
from dotenv import load_dotenv
from typing import Optional, List
import uuid
try:
from src.pronunciation import grade_pronunciation_advanced
except ImportError:
from pronunciation import grade_pronunciation_advanced
load_dotenv()
SCORER_MODEL_ID_TASK1 = "diminch/ielts-task1-grader-ai-v2"
SCORER_MODEL_ID_TASK2 = "diminch/ielts-grader-ai-v2"
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
print(f"API running on: {DEVICE}")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
OPENAI_API_URL = "https://api.openai.com/v1/chat/completions"
if not OPENAI_API_KEY:
print("WARNING: OPENAI_API_KEY not found in .env")
print("Loading Whisper...")
try:
whisper_model = whisper.load_model("base", device=DEVICE)
print("Whisper Loaded.")
except Exception as e:
print(f"Error loading Whisper: {e}")
whisper_model = None
pipelines = {}
def load_writing_model(task_name, model_id):
try:
print(f"Loading {task_name}: {model_id}...")
pipelines[task_name] = pipeline(
"text-classification", model=model_id, tokenizer=model_id,
device=DEVICE, return_all_scores=True
)
print(f"Loaded {task_name}.")
except Exception as e:
print(f"Error loading {task_name}: {e}")
pipelines[task_name] = None
load_writing_model("task1", SCORER_MODEL_ID_TASK1)
load_writing_model("task2", SCORER_MODEL_ID_TASK2)
class WritingRequest(BaseModel):
task_type: int
prompt: str
essay: str
image_url: Optional[str] = None
class WritingScores(BaseModel):
taskResponse: float
coherenceCohesion: float
lexicalResource: float
grammaticalRange: float
class ShortFeedbackWriting(BaseModel):
taskResponse: str
coherenceCohesion: str
lexicalResource: str
grammaticalRange: str
class WritingResponse(BaseModel):
overallScore: float
imageDescription: Optional[str] = None
criteriaScores: WritingScores
shortFeedback: ShortFeedbackWriting
detailedFeedback: str
class SpeakingScores(BaseModel):
fluencyCoherence: float
lexicalResource: float
grammaticalRange: float
pronunciation: float
class PronunciationWord(BaseModel):
word: str
score: int
phonemes_expected: str
phonemes_actual: str
is_correct: bool
error_type: Optional[str] = None
class SpeakingResponse(BaseModel):
overallScore: float
transcript: str
refinedTranscript: str
betterVersion: str
criteriaScores: SpeakingScores
shortFeedback: dict
detailedFeedback: str
pronunciationBreakdown: List[PronunciationWord]
def round_to_half(score: float) -> float:
return round(score * 2) / 2
async def analyze_chart_image(image_url: str, prompt_text: str) -> str:
"""Vision AI for Task 1"""
if not image_url: return "No image provided."
print("Analyzing chart image...")
headers = { "Authorization": f"Bearer {OPENAI_API_KEY}", "Content-Type": "application/json" }
vision_prompt = f"""
Act as a data analyst. Describe this IELTS Writing Task 1 image in detail.
Focus strictly on the main trends, comparisons, and specific data points mentioned in the prompt: "{prompt_text}".
Output a factual description paragraph representing the 'Ground Truth' of the image.
"""
payload = {
"model": "gpt-4o",
"messages": [{"role": "user", "content": [
{"type": "text", "text": vision_prompt},
{"type": "image_url", "image_url": {"url": image_url}}
]}],
"max_tokens": 500
}
async with httpx.AsyncClient(timeout=60.0) as client:
try:
resp = await client.post(OPENAI_API_URL, headers=headers, json=payload)
return resp.json()['choices'][0]['message']['content']
except Exception as e:
print(f"Vision Error: {e}")
return ""
async def generate_writing_feedback(prompt: str, essay: str, scores: WritingScores, task_type: int, img_desc: str = "") -> dict:
print("Generating Writing feedback...")
scores_dict = scores.model_dump()
context_info = ""
criterion_1_name = "Task Response"
if task_type == 1:
context_info = f"IMAGE GROUND TRUTH: {img_desc}\n(Check if the student accurately reported this data)"
criterion_1_name = "Task Achievement"
system_prompt = f"""
You are a strict, expert IELTS Examiner.
TASK INFO:
- Type: Task {task_type}
- Prompt: "{prompt}"
{context_info}
STUDENT ESSAY:
"{essay}"
SCORES GIVEN (0-9):
{json.dumps(scores_dict)}
YOUR GOAL:
Provide a deeply analytical and educational feedback JSON.
INSTRUCTIONS FOR 'detailedFeedback':
The 'detailedFeedback' field MUST be a long Markdown string structured as follows:
1. **General Overview**: A brief summary of why the essay got this band score.
2. **Strengths & Weaknesses**: Bullet points highlighting what was done well and what was missing in each criteria (one by one, four criterias in total).
3. **Specific Corrections (CRITICAL)**:
- Identify 3-4 specific errors (grammar, vocab, or data accuracy).
- For each error, show the "Original Text" -> "Correction" -> "Explanation".
- Example: *Original: "The data shows an increase." -> Better: "The data illustrates a significant upward trend." (Explanation: Use more precise academic vocabulary).*
4. **Actionable Advice**: Give 2-3 concrete steps the student should take to improve their score next time.
Output JSON format:
{{
"shortFeedback": {{
"{criterion_1_name}": "...",
"Coherence and Cohesion": "...",
"Lexical Resource": "...",
"Grammatical Range and Accuracy": "..."
}},
"detailedFeedback": "MARKDOWN STRING..."
}}
"""
payload = {
"model": "gpt-4o-mini",
"messages": [{"role": "system", "content": system_prompt}],
"response_format": {"type": "json_object"}
}
async with httpx.AsyncClient(timeout=60.0) as client:
resp = await client.post(OPENAI_API_URL, headers={"Authorization": f"Bearer {OPENAI_API_KEY}"}, json=payload)
return json.loads(resp.json()['choices'][0]['message']['content'])
app = FastAPI(title="IELTS Full-Stack AI API (V15.0)")
@app.post("/grade/writing", response_model=WritingResponse)
async def grade_writing(request: WritingRequest):
model = pipelines.get(f"task{request.task_type}")
if not model: raise HTTPException(500, "Model not ready.")
image_desc = ""
if request.task_type == 1:
if not request.image_url: raise HTTPException(400, "Task 1 requires image_url.")
image_desc = await analyze_chart_image(request.image_url, request.prompt)
final_input = f"PROMPT: {request.prompt}\n\nIMAGE CONTEXT: {image_desc} [SEP] {request.essay}"
else:
final_input = f"{request.prompt} [SEP] {request.essay}"
results = model(final_input, truncation=True, max_length=512)[0]
raw = {item['label']: item['score'] for item in results}
def r(x): return round(x * 2) / 2
scores = WritingScores(
taskResponse=r(raw.get('LABEL_0', 1.0)),
coherenceCohesion=r(raw.get('LABEL_1', 1.0)),
lexicalResource=r(raw.get('LABEL_2', 1.0)),
grammaticalRange=r(raw.get('LABEL_3', 1.0))
)
overall = r((scores.taskResponse + scores.coherenceCohesion +
scores.lexicalResource + scores.grammaticalRange) / 4)
# Feedback
fb = await generate_writing_feedback(request.prompt, request.essay, scores, request.task_type, image_desc)
sf = fb.get("shortFeedback", {})
tr_fb = sf.get("Task Response") or sf.get("Task Achievement") or "No feedback"
return WritingResponse(
overallScore=overall,
imageDescription=image_desc if request.task_type == 1 else None,
criteriaScores=scores,
shortFeedback=ShortFeedbackWriting(
taskResponse=tr_fb,
coherenceCohesion=sf.get("Coherence and Cohesion", ""),
lexicalResource=sf.get("Lexical Resource", ""),
grammaticalRange=sf.get("Grammatical Range and Accuracy", "")
),
detailedFeedback=fb.get("detailedFeedback", "")
)
async def grade_speaking_with_gpt(transcript: str, metrics: dict, ipa_data: dict, prompt_text: str) -> dict:
"""
Generate Speaking feedback with Pronunciation Breakdown array.
"""
print("Generating Speaking feedback...")
system_prompt = f"""
You are an expert IELTS Speaking Examiner and Phonetician.
INPUT DATA:
- Question: "{prompt_text}"
- Transcript (Whisper): "{transcript}"
- Raw Audio IPA (Actual): /{ipa_data.get('actual_ipa', '')}/
- Expected IPA (Standard): /{ipa_data.get('expected_ipa', '')}/
METRICS:
- Speed: {metrics['wpm']:.1f} WPM
- Pauses: {metrics['pause_ratio']*100:.1f}%
YOUR TASK:
1. Score the 4 criteria (0-9).
2. **Pronunciation Breakdown**: Map words from Transcript to the IPA. Identify mispronounced words.
- Compare Actual vs Expected IPA for each word.
- Assign a score (1-10) for each word's pronunciation.
- Flag errors (e.g., 'severe_substitution' if user said 'trip' but meant 'subject').
OUTPUT JSON FORMAT (This is sample structure, replace with actual data):
{{
"scores": {{ "fluencyCoherence": 0.0, "lexicalResource": 0.0, "grammaticalRange": 0.0, "pronunciation": 0.0 }},
"shortFeedback": {{ "Fluency": "...", "Vocabulary": "...", "Grammar": "...", "Pronunciation": "..." }},
"detailedFeedback": "MARKDOWN string...",
"refinedTranscript": "Corrected version...",
"betterVersion": "Upgraded Band 8 version...",
"pronunciationBreakdown": [
{{
"word": "subject",
"score": 3,
"phonemes_expected": "s ʌ b dʒ ɛ k t",
"phonemes_actual": "t r ɪ p",
"is_correct": false,
"error_type": "severe_substitution"
}},
... (more words)
]
}}
"""
payload = {
"model": "gpt-4o-mini",
"messages": [{"role": "system", "content": system_prompt}],
"response_format": {"type": "json_object"}
}
async with httpx.AsyncClient(timeout=60.0) as client:
resp = await client.post(OPENAI_API_URL, headers={"Authorization": f"Bearer {OPENAI_API_KEY}"}, json=payload)
return json.loads(resp.json()['choices'][0]['message']['content'])
@app.post("/grade/speaking", response_model=SpeakingResponse)
async def grade_speaking(audio: UploadFile = File(...), prompt: str = Form(...)):
temp_filename = f"temp_{uuid.uuid4()}.wav"
try:
with open(temp_filename, "wb") as buffer:
shutil.copyfileobj(audio.file, buffer)
# 1. Whisper & Acoustic Metrics
if not whisper_model: raise HTTPException(500, "Whisper missing")
res = whisper_model.transcribe(temp_filename)
transcript = res["text"].strip()
y, sr = librosa.load(temp_filename)
duration = librosa.get_duration(y=y, sr=sr)
word_count = len(transcript.split())
wpm = (word_count / duration) * 60 if duration > 0 else 0
non_silent = librosa.effects.split(y, top_db=20)
silent_time = duration - sum([(e-s)/sr for s,e in non_silent])
pause_ratio = silent_time / duration if duration > 0 else 0
metrics = {"wpm": wpm, "pause_ratio": pause_ratio}
# 2. IPA Analysis (Subprocess based)
ipa_data = grade_pronunciation_advanced(temp_filename, transcript)
# 3. GPT Analysis
gpt_result = await grade_speaking_with_gpt(transcript, metrics, ipa_data, prompt)
scores = gpt_result.get("scores", {})
# 4. Response
criteria = SpeakingScores(
fluencyCoherence=round_to_half(scores.get("fluencyCoherence", 0)),
lexicalResource=round_to_half(scores.get("lexicalResource", 0)),
grammaticalRange=round_to_half(scores.get("grammaticalRange", 0)),
pronunciation=round_to_half(scores.get("pronunciation", 0))
)
overall = round_to_half((criteria.fluencyCoherence + criteria.lexicalResource +
criteria.grammaticalRange + criteria.pronunciation) / 4)
return SpeakingResponse(
overallScore=overall,
transcript=transcript,
refinedTranscript=gpt_result.get("refinedTranscript", ""),
betterVersion=gpt_result.get("betterVersion", ""),
criteriaScores=criteria,
shortFeedback=gpt_result.get("shortFeedback", {}),
detailedFeedback=gpt_result.get("detailedFeedback", ""),
pronunciationBreakdown=gpt_result.get("pronunciationBreakdown", [])
)
except Exception as e:
print(f"Speaking Error: {e}")
import traceback
traceback.print_exc()
raise HTTPException(500, str(e))
finally:
if os.path.exists(temp_filename): os.remove(temp_filename)
@app.get("/")
def read_root():
return {"message": "IELTS API is running."}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000) |