Update app.py
Browse files
app.py
CHANGED
|
@@ -2,10 +2,8 @@ import gradio as gr
|
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
| 4 |
import plotly.express as px
|
| 5 |
-
import plotly.graph_objects as go
|
| 6 |
|
| 7 |
# Initialize pricing data
|
| 8 |
-
# AWS pricing - Instance types and their properties
|
| 9 |
aws_instances = {
|
| 10 |
"g4dn.xlarge": {"vcpus": 4, "memory": 16, "gpu": "1x NVIDIA T4", "hourly_rate": 0.526, "gpu_memory": "16GB"},
|
| 11 |
"g4dn.2xlarge": {"vcpus": 8, "memory": 32, "gpu": "1x NVIDIA T4", "hourly_rate": 0.752, "gpu_memory": "16GB"},
|
|
@@ -15,7 +13,6 @@ aws_instances = {
|
|
| 15 |
"p4d.24xlarge": {"vcpus": 96, "memory": 1152, "gpu": "8x NVIDIA A100", "hourly_rate": 32.77, "gpu_memory": "8x40GB"}
|
| 16 |
}
|
| 17 |
|
| 18 |
-
# GCP pricing - Instance types and their properties
|
| 19 |
gcp_instances = {
|
| 20 |
"a2-highgpu-1g": {"vcpus": 12, "memory": 85, "gpu": "1x NVIDIA A100", "hourly_rate": 1.46, "gpu_memory": "40GB"},
|
| 21 |
"a2-highgpu-2g": {"vcpus": 24, "memory": 170, "gpu": "2x NVIDIA A100", "hourly_rate": 2.93, "gpu_memory": "2x40GB"},
|
|
@@ -25,7 +22,6 @@ gcp_instances = {
|
|
| 25 |
"g2-standard-4": {"vcpus": 4, "memory": 16, "gpu": "1x NVIDIA L4", "hourly_rate": 0.59, "gpu_memory": "24GB"}
|
| 26 |
}
|
| 27 |
|
| 28 |
-
# API pricing - Models and their prices
|
| 29 |
api_pricing = {
|
| 30 |
"OpenAI": {
|
| 31 |
"GPT-3.5-Turbo": {"input_per_1M": 0.5, "output_per_1M": 1.5, "token_context": 16385},
|
|
@@ -46,7 +42,6 @@ api_pricing = {
|
|
| 46 |
}
|
| 47 |
}
|
| 48 |
|
| 49 |
-
# Model sizes and memory requirements
|
| 50 |
model_sizes = {
|
| 51 |
"Small (7B parameters)": {"memory_required": 14, "throughput_factor": 1.0},
|
| 52 |
"Medium (13B parameters)": {"memory_required": 26, "throughput_factor": 0.7},
|
|
@@ -54,556 +49,191 @@ model_sizes = {
|
|
| 54 |
"XL (180B parameters)": {"memory_required": 360, "throughput_factor": 0.15},
|
| 55 |
}
|
| 56 |
|
| 57 |
-
|
| 58 |
def calculate_aws_cost(instance, hours, storage, reserved=False, spot=False, years=1):
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
# Apply discounts for reservation or spot
|
| 63 |
if spot:
|
| 64 |
-
|
| 65 |
elif reserved:
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
storage_cost = storage * 0.10 # $0.10 per GB for EBS
|
| 73 |
-
|
| 74 |
-
return {
|
| 75 |
-
"compute_cost": compute_cost,
|
| 76 |
-
"storage_cost": storage_cost,
|
| 77 |
-
"total_cost": compute_cost + storage_cost,
|
| 78 |
-
"instance_details": instance_data
|
| 79 |
-
}
|
| 80 |
|
| 81 |
def calculate_gcp_cost(instance, hours, storage, reserved=False, spot=False, years=1):
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
# Apply discounts
|
| 86 |
if spot:
|
| 87 |
-
|
| 88 |
elif reserved:
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
storage_cost = storage * 0.04 # $0.04 per GB for Standard SSD
|
| 96 |
-
|
| 97 |
-
return {
|
| 98 |
-
"compute_cost": compute_cost,
|
| 99 |
-
"storage_cost": storage_cost,
|
| 100 |
-
"total_cost": compute_cost + storage_cost,
|
| 101 |
-
"instance_details": instance_data
|
| 102 |
-
}
|
| 103 |
|
| 104 |
def calculate_api_cost(provider, model, input_tokens, output_tokens, api_calls):
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
if provider == "TogetherAI":
|
| 113 |
-
api_call_costs = api_calls * 0.0001 # $0.0001 per request
|
| 114 |
-
|
| 115 |
-
total_cost = input_cost + output_cost + api_call_costs
|
| 116 |
-
|
| 117 |
-
return {
|
| 118 |
-
"input_cost": input_cost,
|
| 119 |
-
"output_cost": output_cost,
|
| 120 |
-
"api_call_cost": api_call_costs,
|
| 121 |
-
"total_cost": total_cost,
|
| 122 |
-
"model_details": model_data
|
| 123 |
-
}
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
# Format: "16GB"
|
| 135 |
-
memory_val = int(memory_str.split("GB")[0])
|
| 136 |
-
elif "x" in memory_str:
|
| 137 |
-
# Format: "8x40GB"
|
| 138 |
-
parts = memory_str.split("x")
|
| 139 |
-
num_gpus = int(parts[0])
|
| 140 |
-
memory_per_gpu = int(parts[1].split("GB")[0])
|
| 141 |
-
memory_val = num_gpus * memory_per_gpu
|
| 142 |
else:
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
return compatible
|
| 150 |
|
| 151 |
def generate_cost_comparison(
|
| 152 |
-
compute_hours,
|
| 153 |
-
|
| 154 |
-
input_ratio,
|
| 155 |
-
api_calls,
|
| 156 |
-
model_size,
|
| 157 |
-
storage_gb,
|
| 158 |
-
reserved_instances,
|
| 159 |
-
spot_instances,
|
| 160 |
-
multi_year_commitment
|
| 161 |
):
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
# Filter compatible instances
|
| 170 |
-
compatible_aws = filter_compatible_instances(aws_instances, min_memory_required)
|
| 171 |
-
compatible_gcp = filter_compatible_instances(gcp_instances, min_memory_required)
|
| 172 |
-
|
| 173 |
results = []
|
| 174 |
-
|
| 175 |
-
#
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
if total_cost < best_aws_cost:
|
| 188 |
-
best_aws = instance
|
| 189 |
-
best_aws_cost = total_cost
|
| 190 |
-
|
| 191 |
-
aws_results += f"<tr><td>{instance}</td><td>{compatible_aws[instance]['vcpus']}</td><td>{compatible_aws[instance]['memory']}GB</td><td>{compatible_aws[instance]['gpu']}</td><td>${compatible_aws[instance]['hourly_rate']:.3f}</td><td>${total_cost:.2f}</td></tr>"
|
| 192 |
-
|
| 193 |
-
aws_results += "</table>"
|
| 194 |
-
|
| 195 |
if best_aws:
|
| 196 |
-
|
| 197 |
-
results.append({
|
| 198 |
-
"provider": f"AWS ({best_aws})",
|
| 199 |
-
"cost": best_aws_data["total_cost"],
|
| 200 |
-
"type": "Cloud"
|
| 201 |
-
})
|
| 202 |
else:
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
cost_result = calculate_gcp_cost(instance, compute_hours, storage_gb, reserved_instances, spot_instances, multi_year_commitment)
|
| 217 |
-
total_cost = cost_result["total_cost"]
|
| 218 |
-
|
| 219 |
-
if total_cost < best_gcp_cost:
|
| 220 |
-
best_gcp = instance
|
| 221 |
-
best_gcp_cost = total_cost
|
| 222 |
-
|
| 223 |
-
gcp_results += f"<tr><td>{instance}</td><td>{compatible_gcp[instance]['vcpus']}</td><td>{compatible_gcp[instance]['memory']}GB</td><td>{compatible_gcp[instance]['gpu']}</td><td>${compatible_gcp[instance]['hourly_rate']:.3f}</td><td>${total_cost:.2f}</td></tr>"
|
| 224 |
-
|
| 225 |
-
gcp_results += "</table>"
|
| 226 |
-
|
| 227 |
if best_gcp:
|
| 228 |
-
|
| 229 |
-
results.append({
|
| 230 |
-
"provider": f"GCP ({best_gcp})",
|
| 231 |
-
"cost": best_gcp_data["total_cost"],
|
| 232 |
-
"type": "Cloud"
|
| 233 |
-
})
|
| 234 |
else:
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
api_results = "<h3>API Options</h3>"
|
| 241 |
-
api_results += "<table width='100%'><tr><th>Provider</th><th>Model</th><th>Input Cost</th><th>Output Cost</th><th>Total Cost</th><th>Context Length</th></tr>"
|
| 242 |
-
|
| 243 |
api_costs = {}
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
results.append({
|
| 259 |
-
"provider": f"{best_api[0]} ({best_api[1]})",
|
| 260 |
-
"cost": best_api_cost["total_cost"],
|
| 261 |
-
"type": "API"
|
| 262 |
-
})
|
| 263 |
-
|
| 264 |
-
# Create recommendation HTML
|
| 265 |
-
recommendation = "<h3>Recommendation</h3>"
|
| 266 |
-
|
| 267 |
-
# Find the cheapest option
|
| 268 |
-
cheapest = min(results, key=lambda x: x["cost"])
|
| 269 |
-
|
| 270 |
-
if cheapest["type"] == "API":
|
| 271 |
-
recommendation += f"<p>Based on your usage parameters, the <strong>{cheapest['provider']}</strong> API endpoint is the most cost-effective option at <strong>${cheapest['cost']:.2f}/month</strong>.</p>"
|
| 272 |
-
|
| 273 |
-
# Calculate API vs cloud cost ratio
|
| 274 |
-
cheapest_cloud = None
|
| 275 |
-
for result in results:
|
| 276 |
-
if result["type"] == "Cloud":
|
| 277 |
-
if cheapest_cloud is None or result["cost"] < cheapest_cloud["cost"]:
|
| 278 |
-
cheapest_cloud = result
|
| 279 |
-
|
| 280 |
-
if cheapest_cloud:
|
| 281 |
-
ratio = cheapest_cloud["cost"] / cheapest["cost"]
|
| 282 |
-
recommendation += f"<p>This is <strong>{ratio:.1f}x cheaper</strong> than the most affordable cloud option ({cheapest_cloud['provider']}).</p>"
|
| 283 |
else:
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
recommendation += f"<p>This is <strong>{1/ratio:.1f}x cheaper</strong> than the most affordable API option ({cheapest_api['provider']}).</p>"
|
| 297 |
-
else:
|
| 298 |
-
recommendation += f"<p>However, the API option ({cheapest_api['provider']}) is <strong>{ratio:.1f}x cheaper</strong>.</p>"
|
| 299 |
-
|
| 300 |
-
# Additional recommendation text
|
| 301 |
-
if tokens_per_month > 100 and cheapest["type"] == "Cloud":
|
| 302 |
-
recommendation += "<p>With your high token volume, cloud hardware becomes more cost-effective despite the higher upfront costs.</p>"
|
| 303 |
-
elif compute_hours < 50 and cheapest["type"] == "API":
|
| 304 |
-
recommendation += "<p>With your low usage hours, API endpoints are more cost-effective as you only pay for what you use.</p>"
|
| 305 |
-
|
| 306 |
-
# Create breakeven analysis HTML
|
| 307 |
-
breakeven = "<h3>Breakeven Analysis</h3>"
|
| 308 |
-
|
| 309 |
-
if best_aws is not None and best_api_cost["total_cost"] > 0:
|
| 310 |
-
aws_hourly = aws_instances[best_aws]["hourly_rate"]
|
| 311 |
-
breakeven_hours = best_api_cost["total_cost"] / aws_hourly
|
| 312 |
-
|
| 313 |
-
breakeven += f"<p>API vs AWS: <strong>{breakeven_hours:.1f} hours</strong> is the breakeven point.</p>"
|
| 314 |
-
|
| 315 |
-
if compute_hours > breakeven_hours:
|
| 316 |
-
breakeven += "<p>You're past the breakeven point - AWS hardware is more cost-effective than API usage.</p>"
|
| 317 |
-
else:
|
| 318 |
-
breakeven += "<p>You're below the breakeven point - API usage is more cost-effective than AWS hardware.</p>"
|
| 319 |
-
|
| 320 |
-
if best_gcp is not None and best_api_cost["total_cost"] > 0:
|
| 321 |
-
gcp_hourly = gcp_instances[best_gcp]["hourly_rate"]
|
| 322 |
-
breakeven_hours = best_api_cost["total_cost"] / gcp_hourly
|
| 323 |
-
|
| 324 |
-
breakeven += f"<p>API vs GCP: <strong>{breakeven_hours:.1f} hours</strong> is the breakeven point.</p>"
|
| 325 |
-
|
| 326 |
-
if compute_hours > breakeven_hours:
|
| 327 |
-
breakeven += "<p>You're past the breakeven point - GCP hardware is more cost-effective than API usage.</p>"
|
| 328 |
-
else:
|
| 329 |
-
breakeven += "<p>You're below the breakeven point - API usage is more cost-effective than GCP hardware.</p>"
|
| 330 |
-
|
| 331 |
-
# Generate cost comparison chart
|
| 332 |
-
fig = px.bar(
|
| 333 |
-
pd.DataFrame(results),
|
| 334 |
-
x="provider",
|
| 335 |
-
y="cost",
|
| 336 |
-
color="type",
|
| 337 |
-
color_discrete_map={"Cloud": "#3B82F6", "API": "#8B5CF6"},
|
| 338 |
-
title="Monthly Cost Comparison",
|
| 339 |
-
labels={"provider": "Provider & Instance", "cost": "Monthly Cost ($)"}
|
| 340 |
-
)
|
| 341 |
-
|
| 342 |
-
fig.update_layout(height=500)
|
| 343 |
-
|
| 344 |
-
# Create HTML structure for the results
|
| 345 |
-
html_output = f"""
|
| 346 |
-
<div style="padding: 20px; font-family: Arial, sans-serif;">
|
| 347 |
-
<h2>Cost Comparison Results</h2>
|
| 348 |
-
|
| 349 |
-
<div style="margin-bottom: 20px;">
|
| 350 |
-
{aws_results}
|
| 351 |
-
</div>
|
| 352 |
-
|
| 353 |
-
<div style="margin-bottom: 20px;">
|
| 354 |
-
{gcp_results}
|
| 355 |
-
</div>
|
| 356 |
-
|
| 357 |
-
<div style="margin-bottom: 20px;">
|
| 358 |
-
{api_results}
|
| 359 |
-
</div>
|
| 360 |
-
|
| 361 |
-
<div style="margin-bottom: 20px;">
|
| 362 |
-
{recommendation}
|
| 363 |
-
</div>
|
| 364 |
-
|
| 365 |
-
<div style="margin-bottom: 20px;">
|
| 366 |
-
{breakeven}
|
| 367 |
-
</div>
|
| 368 |
-
|
| 369 |
-
<div style="margin-bottom: 20px;">
|
| 370 |
-
<h3>Additional Considerations</h3>
|
| 371 |
-
<div style="display: flex; gap: 20px;">
|
| 372 |
-
<div style="flex: 1; background-color: #F3F4F6; padding: 15px; border-radius: 8px;">
|
| 373 |
-
<h4>Cloud Hardware Pros</h4>
|
| 374 |
-
<ul>
|
| 375 |
-
<li>Full control over infrastructure and customization</li>
|
| 376 |
-
<li>Predictable costs for steady, high-volume workloads</li>
|
| 377 |
-
<li>Can run multiple models simultaneously</li>
|
| 378 |
-
<li>No token context limitations</li>
|
| 379 |
-
<li>Data stays on your infrastructure</li>
|
| 380 |
-
</ul>
|
| 381 |
-
</div>
|
| 382 |
-
<div style="flex: 1; background-color: #F3F4F6; padding: 15px; border-radius: 8px;">
|
| 383 |
-
<h4>API Endpoints Pros</h4>
|
| 384 |
-
<ul>
|
| 385 |
-
<li>No infrastructure management overhead</li>
|
| 386 |
-
<li>Pay-per-use model (ideal for sporadic usage)</li>
|
| 387 |
-
<li>Instant scalability</li>
|
| 388 |
-
<li>No upfront costs or commitment</li>
|
| 389 |
-
<li>Automatic updates to newer model versions</li>
|
| 390 |
-
</ul>
|
| 391 |
-
</div>
|
| 392 |
-
</div>
|
| 393 |
-
</div>
|
| 394 |
-
|
| 395 |
-
<div style="background-color: #FEF3C7; padding: 15px; border-radius: 8px; margin-bottom: 20px;">
|
| 396 |
-
<p><strong>Note:</strong> These estimates are based on current pricing as of May 2025 and may vary based on regional pricing differences, discounts, and usage patterns.</p>
|
| 397 |
-
</div>
|
| 398 |
-
</div>
|
| 399 |
"""
|
| 400 |
-
|
| 401 |
-
|
| 402 |
|
| 403 |
-
# Main app function
|
| 404 |
def app_function(
|
| 405 |
-
compute_hours,
|
| 406 |
-
|
| 407 |
-
input_ratio,
|
| 408 |
-
api_calls,
|
| 409 |
-
model_size,
|
| 410 |
-
storage_gb,
|
| 411 |
-
batch_size,
|
| 412 |
-
reserved_instances,
|
| 413 |
-
spot_instances,
|
| 414 |
-
multi_year_commitment
|
| 415 |
):
|
| 416 |
-
|
| 417 |
-
compute_hours,
|
| 418 |
-
|
| 419 |
-
input_ratio,
|
| 420 |
-
api_calls,
|
| 421 |
-
model_size,
|
| 422 |
-
storage_gb,
|
| 423 |
-
reserved_instances,
|
| 424 |
-
spot_instances,
|
| 425 |
-
multi_year_commitment
|
| 426 |
)
|
| 427 |
-
|
| 428 |
-
return html_output, fig
|
| 429 |
|
| 430 |
-
#
|
| 431 |
-
|
| 432 |
-
gr.
|
| 433 |
-
|
| 434 |
-
<
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
with gr.Row():
|
| 440 |
-
with gr.Column(scale=1):
|
| 441 |
-
gr.HTML("<h3>Usage Parameters</h3>")
|
| 442 |
-
|
| 443 |
-
compute_hours = gr.Slider(
|
| 444 |
-
label="Compute Hours per Month",
|
| 445 |
-
minimum=1,
|
| 446 |
-
maximum=730,
|
| 447 |
-
value=100,
|
| 448 |
-
info="Number of hours you'll run the model per month"
|
| 449 |
-
)
|
| 450 |
-
|
| 451 |
-
tokens_per_month = gr.Slider(
|
| 452 |
-
label="Tokens Processed per Month (millions)",
|
| 453 |
-
minimum=1,
|
| 454 |
-
maximum=1000,
|
| 455 |
-
value=10,
|
| 456 |
-
info="Total number of tokens processed per month in millions"
|
| 457 |
-
)
|
| 458 |
-
|
| 459 |
-
input_ratio = gr.Slider(
|
| 460 |
-
label="Input Token Ratio (%)",
|
| 461 |
-
minimum=10,
|
| 462 |
-
maximum=90,
|
| 463 |
-
value=30,
|
| 464 |
-
info="Percentage of total tokens that are input tokens"
|
| 465 |
-
)
|
| 466 |
-
|
| 467 |
-
api_calls = gr.Slider(
|
| 468 |
-
label="API Calls per Month",
|
| 469 |
-
minimum=100,
|
| 470 |
-
maximum=1000000,
|
| 471 |
-
value=10000,
|
| 472 |
-
step=100,
|
| 473 |
-
info="Number of API calls made per month"
|
| 474 |
-
)
|
| 475 |
-
|
| 476 |
-
model_size = gr.Dropdown(
|
| 477 |
-
label="Model Size",
|
| 478 |
-
choices=list(model_sizes.keys()),
|
| 479 |
-
value="Medium (13B parameters)",
|
| 480 |
-
info="Size of the language model you want to run"
|
| 481 |
-
)
|
| 482 |
-
|
| 483 |
-
storage_gb = gr.Slider(
|
| 484 |
-
label="Storage Required (GB)",
|
| 485 |
-
minimum=10,
|
| 486 |
-
maximum=1000,
|
| 487 |
-
value=100,
|
| 488 |
-
info="Amount of storage required for models and data"
|
| 489 |
-
)
|
| 490 |
-
|
| 491 |
-
batch_size = gr.Slider(
|
| 492 |
-
label="Batch Size",
|
| 493 |
-
minimum=1,
|
| 494 |
-
maximum=64,
|
| 495 |
-
value=4,
|
| 496 |
-
info="Batch size for inference (affects throughput)"
|
| 497 |
-
)
|
| 498 |
-
|
| 499 |
-
gr.HTML("<h3>Advanced Options</h3>")
|
| 500 |
-
|
| 501 |
-
reserved_instances = gr.Checkbox(
|
| 502 |
-
label="Use Reserved Instances",
|
| 503 |
-
value=False,
|
| 504 |
-
info="Reserved instances offer significant discounts with 1-3 year commitments"
|
| 505 |
-
)
|
| 506 |
-
|
| 507 |
-
spot_instances = gr.Checkbox(
|
| 508 |
-
label="Use Spot/Preemptible Instances",
|
| 509 |
-
value=False,
|
| 510 |
-
info="Spot instances can be 70-90% cheaper but may be terminated with little notice"
|
| 511 |
-
)
|
| 512 |
-
|
| 513 |
-
multi_year_commitment = gr.Radio(
|
| 514 |
-
label="Commitment Period (if using Reserved Instances)",
|
| 515 |
-
choices=["1", "3"],
|
| 516 |
-
value="1",
|
| 517 |
-
info="Length of reserved instance commitment in years"
|
| 518 |
-
)
|
| 519 |
-
|
| 520 |
-
submit_button = gr.Button("Calculate Costs", variant="primary")
|
| 521 |
-
|
| 522 |
-
with gr.Column(scale=2):
|
| 523 |
-
results_html = gr.HTML(label="Results")
|
| 524 |
-
plot_output = gr.Plot(label="Cost Comparison")
|
| 525 |
-
|
| 526 |
-
submit_button.click(
|
| 527 |
-
app_function,
|
| 528 |
-
inputs=[
|
| 529 |
-
compute_hours,
|
| 530 |
-
tokens_per_month,
|
| 531 |
-
input_ratio,
|
| 532 |
-
api_calls,
|
| 533 |
-
model_size,
|
| 534 |
-
storage_gb,
|
| 535 |
-
reserved_instances,
|
| 536 |
-
spot_instances,
|
| 537 |
-
multi_year_commitment
|
| 538 |
-
],
|
| 539 |
-
outputs=[results_html, plot_output]
|
| 540 |
-
)
|
| 541 |
-
|
| 542 |
-
gr.HTML("""
|
| 543 |
-
<div style="margin-top: 30px; border-top: 1px solid #e5e7eb; padding-top: 20px;">
|
| 544 |
-
<h3>Help & Resources</h3>
|
| 545 |
-
<p><strong>Cloud Provider Documentation:</strong>
|
| 546 |
-
<a href="https://aws.amazon.com/ec2/pricing/" target="_blank">AWS EC2 Pricing</a> |
|
| 547 |
-
<a href="https://cloud.google.com/compute/pricing" target="_blank">GCP Compute Engine Pricing</a>
|
| 548 |
-
</p>
|
| 549 |
-
<p><strong>API Provider Documentation:</strong>
|
| 550 |
-
<a href="https://openai.com/pricing" target="_blank">OpenAI API Pricing</a> |
|
| 551 |
-
<a href="https://www.anthropic.com/api" target="_blank">Anthropic Claude API Pricing</a> |
|
| 552 |
-
<a href="https://www.together.ai/pricing" target="_blank">TogetherAI API Pricing</a>
|
| 553 |
-
</p>
|
| 554 |
-
<p>Made with ❤️ by Cloud Cost Estimator | Data last updated: May 2025</p>
|
| 555 |
-
</div>
|
| 556 |
-
""")
|
| 557 |
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
label="
|
| 565 |
-
choices=
|
| 566 |
-
value=
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
tokens_per_month,
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
gr.HTML("""
|
| 594 |
-
<div style="margin-top: 30px; border-top: 1px solid #e5e7eb; padding-top: 20px;">
|
| 595 |
-
<h3>Help & Resources</h3>
|
| 596 |
-
<p><strong>Cloud Provider Documentation:</strong>
|
| 597 |
-
<a href="https://aws.amazon.com/ec2/pricing/" target="_blank">AWS EC2 Pricing</a> |
|
| 598 |
-
<a href="https://cloud.google.com/compute/pricing" target="_blank">GCP Compute Engine Pricing</a>
|
| 599 |
-
</p>
|
| 600 |
-
<p><strong>API Provider Documentation:</strong>
|
| 601 |
-
<a href="https://openai.com/pricing" target="_blank">OpenAI API Pricing</a> |
|
| 602 |
-
<a href="https://www.anthropic.com/api" target="_blank">Anthropic Claude API Pricing</a> |
|
| 603 |
-
<a href="https://www.together.ai/pricing" target="_blank">TogetherAI API Pricing</a>
|
| 604 |
-
</p>
|
| 605 |
-
<p>Made with ❤️ by Cloud Cost Estimator | Data last updated: May 2025</p>
|
| 606 |
-
</div>
|
| 607 |
-
""")
|
| 608 |
|
| 609 |
-
|
|
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
| 4 |
import plotly.express as px
|
|
|
|
| 5 |
|
| 6 |
# Initialize pricing data
|
|
|
|
| 7 |
aws_instances = {
|
| 8 |
"g4dn.xlarge": {"vcpus": 4, "memory": 16, "gpu": "1x NVIDIA T4", "hourly_rate": 0.526, "gpu_memory": "16GB"},
|
| 9 |
"g4dn.2xlarge": {"vcpus": 8, "memory": 32, "gpu": "1x NVIDIA T4", "hourly_rate": 0.752, "gpu_memory": "16GB"},
|
|
|
|
| 13 |
"p4d.24xlarge": {"vcpus": 96, "memory": 1152, "gpu": "8x NVIDIA A100", "hourly_rate": 32.77, "gpu_memory": "8x40GB"}
|
| 14 |
}
|
| 15 |
|
|
|
|
| 16 |
gcp_instances = {
|
| 17 |
"a2-highgpu-1g": {"vcpus": 12, "memory": 85, "gpu": "1x NVIDIA A100", "hourly_rate": 1.46, "gpu_memory": "40GB"},
|
| 18 |
"a2-highgpu-2g": {"vcpus": 24, "memory": 170, "gpu": "2x NVIDIA A100", "hourly_rate": 2.93, "gpu_memory": "2x40GB"},
|
|
|
|
| 22 |
"g2-standard-4": {"vcpus": 4, "memory": 16, "gpu": "1x NVIDIA L4", "hourly_rate": 0.59, "gpu_memory": "24GB"}
|
| 23 |
}
|
| 24 |
|
|
|
|
| 25 |
api_pricing = {
|
| 26 |
"OpenAI": {
|
| 27 |
"GPT-3.5-Turbo": {"input_per_1M": 0.5, "output_per_1M": 1.5, "token_context": 16385},
|
|
|
|
| 42 |
}
|
| 43 |
}
|
| 44 |
|
|
|
|
| 45 |
model_sizes = {
|
| 46 |
"Small (7B parameters)": {"memory_required": 14, "throughput_factor": 1.0},
|
| 47 |
"Medium (13B parameters)": {"memory_required": 26, "throughput_factor": 0.7},
|
|
|
|
| 49 |
"XL (180B parameters)": {"memory_required": 360, "throughput_factor": 0.15},
|
| 50 |
}
|
| 51 |
|
| 52 |
+
|
| 53 |
def calculate_aws_cost(instance, hours, storage, reserved=False, spot=False, years=1):
|
| 54 |
+
data = aws_instances[instance]
|
| 55 |
+
rate = data['hourly_rate']
|
|
|
|
|
|
|
| 56 |
if spot:
|
| 57 |
+
rate *= 0.3
|
| 58 |
elif reserved:
|
| 59 |
+
factors = {1: 0.6, 3: 0.4}
|
| 60 |
+
rate *= factors.get(years, 0.6)
|
| 61 |
+
compute = rate * hours
|
| 62 |
+
storage_cost = storage * 0.10
|
| 63 |
+
return {'compute_cost': compute, 'storage_cost': storage_cost, 'total_cost': compute + storage_cost}
|
| 64 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
def calculate_gcp_cost(instance, hours, storage, reserved=False, spot=False, years=1):
|
| 67 |
+
data = gcp_instances[instance]
|
| 68 |
+
rate = data['hourly_rate']
|
|
|
|
|
|
|
| 69 |
if spot:
|
| 70 |
+
rate *= 0.2
|
| 71 |
elif reserved:
|
| 72 |
+
factors = {1: 0.7, 3: 0.5}
|
| 73 |
+
rate *= factors.get(years, 0.7)
|
| 74 |
+
compute = rate * hours
|
| 75 |
+
storage_cost = storage * 0.04
|
| 76 |
+
return {'compute_cost': compute, 'storage_cost': storage_cost, 'total_cost': compute + storage_cost}
|
| 77 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
def calculate_api_cost(provider, model, input_tokens, output_tokens, api_calls):
|
| 80 |
+
mdata = api_pricing[provider][model]
|
| 81 |
+
input_cost = (input_tokens * mdata['input_per_1M']) / 1
|
| 82 |
+
output_cost = (output_tokens * mdata['output_per_1M']) / 1
|
| 83 |
+
call_cost = api_calls * 0.0001 if provider == 'TogetherAI' else 0
|
| 84 |
+
total = input_cost + output_cost + call_cost
|
| 85 |
+
return {'input_cost': input_cost, 'output_cost': output_cost, 'api_call_cost': call_cost, 'total_cost': total}
|
| 86 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
+
def filter_compatible_instances(instances, min_mem):
|
| 89 |
+
result = {}
|
| 90 |
+
for name, data in instances.items():
|
| 91 |
+
mem_str = data['gpu_memory']
|
| 92 |
+
if 'x' in mem_str and not mem_str.startswith(('1x','2x','4x','8x')):
|
| 93 |
+
val = int(mem_str.replace('GB',''))
|
| 94 |
+
elif 'x' in mem_str:
|
| 95 |
+
parts = mem_str.split('x')
|
| 96 |
+
val = int(parts[0]) * int(parts[1].replace('GB',''))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
else:
|
| 98 |
+
val = int(mem_str.replace('GB',''))
|
| 99 |
+
if val >= min_mem:
|
| 100 |
+
result[name] = data
|
| 101 |
+
return result
|
| 102 |
+
|
|
|
|
|
|
|
| 103 |
|
| 104 |
def generate_cost_comparison(
|
| 105 |
+
compute_hours, tokens_per_month, input_ratio, api_calls,
|
| 106 |
+
model_size, storage_gb, reserved_instances, spot_instances, multi_year_commitment
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
):
|
| 108 |
+
years = int(multi_year_commitment)
|
| 109 |
+
in_tokens = tokens_per_month * (input_ratio/100)
|
| 110 |
+
out_tokens = tokens_per_month - in_tokens
|
| 111 |
+
min_mem = model_sizes[model_size]['memory_required']
|
| 112 |
+
aws_comp = filter_compatible_instances(aws_instances, min_mem)
|
| 113 |
+
gcp_comp = filter_compatible_instances(gcp_instances, min_mem)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
results = []
|
| 115 |
+
|
| 116 |
+
# AWS table
|
| 117 |
+
aws_html = '<h3>AWS Compatible Instances</h3>'
|
| 118 |
+
if aws_comp:
|
| 119 |
+
aws_html += '<table width="100%"><tr><th>Instance</th><th>Monthly Cost</th></tr>'
|
| 120 |
+
best_aws, best_cost = None, float('inf')
|
| 121 |
+
for inst in aws_comp:
|
| 122 |
+
c = calculate_aws_cost(inst, compute_hours, storage_gb, reserved_instances, spot_instances, years)['total_cost']
|
| 123 |
+
aws_html += f'<tr><td>{inst}</td><td>${c:.2f}</td></tr>'
|
| 124 |
+
if c < best_cost:
|
| 125 |
+
best_aws, best_cost = inst, c
|
| 126 |
+
aws_html += '</table>'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
if best_aws:
|
| 128 |
+
results.append({'provider': f'AWS ({best_aws})', 'cost': best_cost, 'type':'Cloud'})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
else:
|
| 130 |
+
aws_html += '<p>No compatible AWS instances.</p>'
|
| 131 |
+
|
| 132 |
+
# GCP table
|
| 133 |
+
gcp_html = '<h3>GCP Compatible Instances</h3>'
|
| 134 |
+
if gcp_comp:
|
| 135 |
+
gcp_html += '<table width="100%"><tr><th>Instance</th><th>Monthly Cost</th></tr>'
|
| 136 |
+
best_gcp, best_gcp_cost = None, float('inf')
|
| 137 |
+
for inst in gcp_comp:
|
| 138 |
+
c = calculate_gcp_cost(inst, compute_hours, storage_gb, reserved_instances, spot_instances, years)['total_cost']
|
| 139 |
+
gcp_html += f'<tr><td>{inst}</td><td>${c:.2f}</td></tr>'
|
| 140 |
+
if c < best_gcp_cost:
|
| 141 |
+
best_gcp, best_gcp_cost = inst, c
|
| 142 |
+
gcp_html += '</table>'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
if best_gcp:
|
| 144 |
+
results.append({'provider': f'GCP ({best_gcp})', 'cost': best_gcp_cost, 'type':'Cloud'})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
else:
|
| 146 |
+
gcp_html += '<p>No compatible GCP instances.</p>'
|
| 147 |
+
|
| 148 |
+
# API table
|
| 149 |
+
api_html = '<h3>API Options</h3>'
|
| 150 |
+
api_html += '<table width="100%"><tr><th>Provider</th><th>Model</th><th>Total Cost</th></tr>'
|
|
|
|
|
|
|
|
|
|
| 151 |
api_costs = {}
|
| 152 |
+
for prov in api_pricing:
|
| 153 |
+
for mdl in api_pricing[prov]:
|
| 154 |
+
cost_data = calculate_api_cost(prov, mdl, in_tokens, out_tokens, api_calls)
|
| 155 |
+
api_costs[(prov,mdl)] = cost_data['total_cost']
|
| 156 |
+
api_html += f'<tr><td>{prov}</td><td>{mdl}</td><td>${cost_data["total_cost"]:.2f}</td></tr>'
|
| 157 |
+
api_html += '</table>'
|
| 158 |
+
best_api = min(api_costs, key=api_costs.get)
|
| 159 |
+
results.append({'provider': f'{best_api[0]} ({best_api[1]})', 'cost': api_costs[best_api], 'type':'API'})
|
| 160 |
+
|
| 161 |
+
# Recommendation
|
| 162 |
+
cheapest = min(results, key=lambda x: x['cost'])
|
| 163 |
+
rec = '<h3>Recommendation</h3>'
|
| 164 |
+
if cheapest['type']=='API':
|
| 165 |
+
rec += f"<p>The API {cheapest['provider']} is cheapest at ${cheapest['cost']:.2f}.</p>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
else:
|
| 167 |
+
rec += f"<p>The Cloud {cheapest['provider']} is cheapest at ${cheapest['cost']:.2f}.</p>"
|
| 168 |
+
|
| 169 |
+
# Plot
|
| 170 |
+
df_res = pd.DataFrame(results)
|
| 171 |
+
fig = px.bar(df_res, x='provider', y='cost', color='type', title='Monthly Cost Comparison')
|
| 172 |
+
|
| 173 |
+
# HTML output
|
| 174 |
+
html = f"""
|
| 175 |
+
<div>{aws_html}</div>
|
| 176 |
+
<div>{gcp_html}</div>
|
| 177 |
+
<div>{api_html}</div>
|
| 178 |
+
<div>{rec}</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
"""
|
| 180 |
+
return html, fig
|
| 181 |
+
|
| 182 |
|
|
|
|
| 183 |
def app_function(
|
| 184 |
+
compute_hours, tokens_per_month, input_ratio, api_calls,
|
| 185 |
+
model_size, storage_gb, reserved_instances, spot_instances, multi_year_commitment
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
):
|
| 187 |
+
return generate_cost_comparison(
|
| 188 |
+
compute_hours, tokens_per_month, input_ratio, api_calls,
|
| 189 |
+
model_size, storage_gb, reserved_instances, spot_instances, multi_year_commitment
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
)
|
|
|
|
|
|
|
| 191 |
|
| 192 |
+
# Gradio interface
|
| 193 |
+
def main():
|
| 194 |
+
with gr.Blocks(title="Cloud Cost Estimator", theme=gr.themes.Soft(primary_hue="indigo")) as demo:
|
| 195 |
+
gr.HTML("""
|
| 196 |
+
<div style="text-align:center; margin-bottom:20px;">
|
| 197 |
+
<h1>Cloud Cost Estimator</h1>
|
| 198 |
+
<p>Compare costs between cloud hardware and API endpoints</p>
|
| 199 |
+
</div>
|
| 200 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
+
with gr.Row():
|
| 203 |
+
with gr.Column(scale=1):
|
| 204 |
+
gr.HTML("<h3>Usage Parameters</h3>")
|
| 205 |
+
compute_hours = gr.Slider(label="Compute Hours per Month", minimum=1, maximum=730, value=100)
|
| 206 |
+
tokens_per_month = gr.Slider(label="Tokens Processed per Month (millions)", minimum=1, maximum=1000, value=10)
|
| 207 |
+
input_ratio = gr.Slider(label="Input Token Ratio (%)", minimum=10, maximum=90, value=30)
|
| 208 |
+
api_calls = gr.Slider(label="API Calls per Month", minimum=100, maximum=1000000, value=10000, step=100)
|
| 209 |
+
model_size = gr.Dropdown(label="Model Size", choices=list(model_sizes.keys()), value="Medium (13B parameters)")
|
| 210 |
+
storage_gb = gr.Slider(label="Storage Required (GB)", minimum=10, maximum=1000, value=100)
|
| 211 |
+
|
| 212 |
+
gr.HTML("<h3>Advanced Options</h3>")
|
| 213 |
+
reserved_instances = gr.Checkbox(label="Use Reserved Instances", value=False)
|
| 214 |
+
spot_instances = gr.Checkbox(label="Use Spot/Preemptible Instances", value=False)
|
| 215 |
+
multi_year_commitment = gr.Radio(label="Commitment Period (years)", choices=["1","3"], value="1")
|
| 216 |
+
submit_button = gr.Button("Calculate Costs", variant="primary")
|
| 217 |
+
|
| 218 |
+
with gr.Column(scale=2):
|
| 219 |
+
results_html = gr.HTML(label="Results")
|
| 220 |
+
plot_output = gr.Plot(label="Cost Comparison")
|
| 221 |
+
|
| 222 |
+
submit_button.click(
|
| 223 |
+
app_function,
|
| 224 |
+
inputs=[compute_hours, tokens_per_month, input_ratio, api_calls, model_size, storage_gb, reserved_instances, spot_instances, multi_year_commitment],
|
| 225 |
+
outputs=[results_html, plot_output]
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
gr.HTML("""
|
| 229 |
+
<div style="margin-top:30px; border-top:1px solid #e5e7eb; padding-top:20px;">
|
| 230 |
+
<h3>Help & Resources</h3>
|
| 231 |
+
<p><a href="https://aws.amazon.com/ec2/pricing/">AWS EC2 Pricing</a> | <a href="https://cloud.google.com/compute/pricing">GCP Pricing</a></p>
|
| 232 |
+
<p><a href="https://openai.com/pricing">OpenAI API Pricing</a> | <a href="https://www.anthropic.com/api">Anthropic Claude API Pricing</a> | <a href="https://www.together.ai/pricing">TogetherAI Pricing</a></p>
|
| 233 |
+
</div>
|
| 234 |
+
""")
|
| 235 |
+
|
| 236 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
|
| 238 |
+
if __name__ == "__main__":
|
| 239 |
+
main()
|