David Driscoll
commited on
Commit
·
4a53aae
1
Parent(s):
74d3d77
Overhaul lag reduction
Browse files
app.py
CHANGED
|
@@ -9,9 +9,16 @@ import mediapipe as mp
|
|
| 9 |
from fer import FER # Facial emotion recognition
|
| 10 |
|
| 11 |
# -----------------------------
|
| 12 |
-
# Configuration
|
| 13 |
# -----------------------------
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# -----------------------------
|
| 17 |
# Global caches for overlay info and frame counters
|
|
@@ -34,16 +41,18 @@ face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5)
|
|
| 34 |
object_detection_model = models.detection.fasterrcnn_resnet50_fpn(
|
| 35 |
weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT
|
| 36 |
)
|
| 37 |
-
object_detection_model.eval()
|
|
|
|
| 38 |
obj_transform = transforms.Compose([transforms.ToTensor()])
|
| 39 |
|
|
|
|
|
|
|
| 40 |
emotion_detector = FER(mtcnn=True)
|
| 41 |
|
| 42 |
# -----------------------------
|
| 43 |
-
#
|
| 44 |
# -----------------------------
|
| 45 |
def draw_posture_overlay(raw_frame, landmarks):
|
| 46 |
-
# Draw each landmark as a small circle
|
| 47 |
for (x, y) in landmarks:
|
| 48 |
cv2.circle(raw_frame, (x, y), 4, (0, 255, 0), -1)
|
| 49 |
return raw_frame
|
|
@@ -55,27 +64,42 @@ def draw_boxes_overlay(raw_frame, boxes, color):
|
|
| 55 |
|
| 56 |
# -----------------------------
|
| 57 |
# Heavy (Synchronous) Detection Functions
|
| 58 |
-
# These functions compute the overlay info on the current frame.
|
| 59 |
# -----------------------------
|
| 60 |
def compute_posture_overlay(image):
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
if pose_results.pose_landmarks:
|
| 66 |
landmarks = []
|
| 67 |
for lm in pose_results.pose_landmarks.landmark:
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
| 69 |
text = "Posture detected"
|
| 70 |
else:
|
| 71 |
landmarks = []
|
| 72 |
text = "No posture detected"
|
|
|
|
| 73 |
return landmarks, text
|
| 74 |
|
| 75 |
def compute_emotion_overlay(image):
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
if emotions:
|
| 80 |
top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1])
|
| 81 |
text = f"{top_emotion} ({score:.2f})"
|
|
@@ -84,33 +108,48 @@ def compute_emotion_overlay(image):
|
|
| 84 |
return text
|
| 85 |
|
| 86 |
def compute_objects_overlay(image):
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
with torch.no_grad():
|
| 92 |
detections = object_detection_model([img_tensor])[0]
|
|
|
|
| 93 |
threshold = 0.8
|
| 94 |
boxes = []
|
| 95 |
for box, score in zip(detections["boxes"], detections["scores"]):
|
| 96 |
if score > threshold:
|
|
|
|
|
|
|
| 97 |
boxes.append(tuple(box.int().cpu().numpy()))
|
|
|
|
| 98 |
text = f"Detected {len(boxes)} object(s)" if boxes else "No objects detected"
|
| 99 |
return boxes, text
|
| 100 |
|
| 101 |
def compute_faces_overlay(image):
|
| 102 |
-
|
| 103 |
-
h, w, _ =
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
boxes = []
|
| 107 |
if face_results.detections:
|
| 108 |
for detection in face_results.detections:
|
| 109 |
bbox = detection.location_data.relative_bounding_box
|
| 110 |
-
x = int(bbox.xmin *
|
| 111 |
-
y = int(bbox.ymin *
|
| 112 |
-
box_w = int(bbox.width *
|
| 113 |
-
box_h = int(bbox.height *
|
|
|
|
|
|
|
| 114 |
boxes.append((x, y, x + box_w, y + box_h))
|
| 115 |
text = f"Detected {len(boxes)} face(s)"
|
| 116 |
else:
|
|
@@ -118,62 +157,69 @@ def compute_faces_overlay(image):
|
|
| 118 |
return boxes, text
|
| 119 |
|
| 120 |
# -----------------------------
|
| 121 |
-
# Main Analysis Functions
|
| 122 |
-
# They update the cache every SKIP_RATE frames and always return a current frame with overlay.
|
| 123 |
# -----------------------------
|
| 124 |
def analyze_posture_current(image):
|
| 125 |
global posture_cache
|
| 126 |
posture_cache["counter"] += 1
|
| 127 |
-
current_frame = np.array(image)
|
| 128 |
-
|
| 129 |
if posture_cache["counter"] % SKIP_RATE == 0 or posture_cache["landmarks"] is None:
|
| 130 |
landmarks, text = compute_posture_overlay(image)
|
| 131 |
posture_cache["landmarks"] = landmarks
|
| 132 |
posture_cache["text"] = text
|
| 133 |
-
|
| 134 |
output = current_frame.copy()
|
| 135 |
if posture_cache["landmarks"]:
|
| 136 |
output = draw_posture_overlay(output, posture_cache["landmarks"])
|
|
|
|
| 137 |
return output, f"Posture Analysis: {posture_cache['text']}"
|
| 138 |
|
| 139 |
def analyze_emotion_current(image):
|
| 140 |
global emotion_cache
|
| 141 |
emotion_cache["counter"] += 1
|
| 142 |
current_frame = np.array(image)
|
|
|
|
| 143 |
if emotion_cache["counter"] % SKIP_RATE == 0 or emotion_cache["text"] is None:
|
| 144 |
text = compute_emotion_overlay(image)
|
| 145 |
emotion_cache["text"] = text
|
| 146 |
-
|
| 147 |
return current_frame, f"Emotion Analysis: {emotion_cache['text']}"
|
| 148 |
|
| 149 |
def analyze_objects_current(image):
|
| 150 |
global objects_cache
|
| 151 |
objects_cache["counter"] += 1
|
| 152 |
current_frame = np.array(image)
|
|
|
|
| 153 |
if objects_cache["counter"] % SKIP_RATE == 0 or objects_cache["boxes"] is None:
|
| 154 |
boxes, text = compute_objects_overlay(image)
|
| 155 |
objects_cache["boxes"] = boxes
|
| 156 |
objects_cache["text"] = text
|
|
|
|
| 157 |
output = current_frame.copy()
|
| 158 |
if objects_cache["boxes"]:
|
| 159 |
output = draw_boxes_overlay(output, objects_cache["boxes"], (255, 255, 0))
|
|
|
|
| 160 |
return output, f"Object Detection: {objects_cache['text']}"
|
| 161 |
|
| 162 |
def analyze_faces_current(image):
|
| 163 |
global faces_cache
|
| 164 |
faces_cache["counter"] += 1
|
| 165 |
current_frame = np.array(image)
|
|
|
|
| 166 |
if faces_cache["counter"] % SKIP_RATE == 0 or faces_cache["boxes"] is None:
|
| 167 |
boxes, text = compute_faces_overlay(image)
|
| 168 |
faces_cache["boxes"] = boxes
|
| 169 |
faces_cache["text"] = text
|
|
|
|
| 170 |
output = current_frame.copy()
|
| 171 |
if faces_cache["boxes"]:
|
| 172 |
output = draw_boxes_overlay(output, faces_cache["boxes"], (0, 0, 255))
|
|
|
|
| 173 |
return output, f"Face Detection: {faces_cache['text']}"
|
| 174 |
|
| 175 |
# -----------------------------
|
| 176 |
-
# Custom CSS
|
| 177 |
# -----------------------------
|
| 178 |
custom_css = """
|
| 179 |
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');
|
|
@@ -206,7 +252,7 @@ body {
|
|
| 206 |
"""
|
| 207 |
|
| 208 |
# -----------------------------
|
| 209 |
-
# Create Individual Interfaces
|
| 210 |
# -----------------------------
|
| 211 |
posture_interface = gr.Interface(
|
| 212 |
fn=analyze_posture_current,
|
|
@@ -214,7 +260,7 @@ posture_interface = gr.Interface(
|
|
| 214 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Posture Analysis")],
|
| 215 |
title="Posture Analysis",
|
| 216 |
description="Detects your posture using MediaPipe.",
|
| 217 |
-
live=True
|
| 218 |
)
|
| 219 |
|
| 220 |
emotion_interface = gr.Interface(
|
|
@@ -223,7 +269,7 @@ emotion_interface = gr.Interface(
|
|
| 223 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Emotion Analysis")],
|
| 224 |
title="Emotion Analysis",
|
| 225 |
description="Detects facial emotions using FER.",
|
| 226 |
-
live=
|
| 227 |
)
|
| 228 |
|
| 229 |
objects_interface = gr.Interface(
|
|
@@ -232,7 +278,7 @@ objects_interface = gr.Interface(
|
|
| 232 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Object Detection")],
|
| 233 |
title="Object Detection",
|
| 234 |
description="Detects objects using a pretrained Faster R-CNN.",
|
| 235 |
-
live=
|
| 236 |
)
|
| 237 |
|
| 238 |
faces_interface = gr.Interface(
|
|
@@ -241,11 +287,11 @@ faces_interface = gr.Interface(
|
|
| 241 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Face Detection")],
|
| 242 |
title="Face Detection",
|
| 243 |
description="Detects faces using MediaPipe.",
|
| 244 |
-
live=
|
| 245 |
)
|
| 246 |
|
| 247 |
# -----------------------------
|
| 248 |
-
# Create a Tabbed Interface
|
| 249 |
# -----------------------------
|
| 250 |
tabbed_interface = gr.TabbedInterface(
|
| 251 |
interface_list=[posture_interface, emotion_interface, objects_interface, faces_interface],
|
|
@@ -253,12 +299,15 @@ tabbed_interface = gr.TabbedInterface(
|
|
| 253 |
)
|
| 254 |
|
| 255 |
# -----------------------------
|
| 256 |
-
# Wrap
|
| 257 |
# -----------------------------
|
| 258 |
demo = gr.Blocks(css=custom_css)
|
| 259 |
with demo:
|
| 260 |
gr.Markdown("<h1 class='gradio-title'>Real-Time Multi-Analysis App</h1>")
|
| 261 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
| 262 |
tabbed_interface.render()
|
| 263 |
|
| 264 |
if __name__ == "__main__":
|
|
|
|
| 9 |
from fer import FER # Facial emotion recognition
|
| 10 |
|
| 11 |
# -----------------------------
|
| 12 |
+
# Configuration
|
| 13 |
# -----------------------------
|
| 14 |
+
# 1) Increase skip rate
|
| 15 |
+
SKIP_RATE = 15
|
| 16 |
+
|
| 17 |
+
# 2) Use GPU if available
|
| 18 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 19 |
+
|
| 20 |
+
# 3) Desired input size for faster inference
|
| 21 |
+
DESIRED_SIZE = (640, 480)
|
| 22 |
|
| 23 |
# -----------------------------
|
| 24 |
# Global caches for overlay info and frame counters
|
|
|
|
| 41 |
object_detection_model = models.detection.fasterrcnn_resnet50_fpn(
|
| 42 |
weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT
|
| 43 |
)
|
| 44 |
+
object_detection_model.eval().to(device) # Move model to GPU (if available)
|
| 45 |
+
|
| 46 |
obj_transform = transforms.Compose([transforms.ToTensor()])
|
| 47 |
|
| 48 |
+
# If the FER library supports GPU, it may pick it up automatically.
|
| 49 |
+
# Some versions allow device specification, e.g. FER(mtcnn=True, device=device).
|
| 50 |
emotion_detector = FER(mtcnn=True)
|
| 51 |
|
| 52 |
# -----------------------------
|
| 53 |
+
# Overlay Drawing Functions
|
| 54 |
# -----------------------------
|
| 55 |
def draw_posture_overlay(raw_frame, landmarks):
|
|
|
|
| 56 |
for (x, y) in landmarks:
|
| 57 |
cv2.circle(raw_frame, (x, y), 4, (0, 255, 0), -1)
|
| 58 |
return raw_frame
|
|
|
|
| 64 |
|
| 65 |
# -----------------------------
|
| 66 |
# Heavy (Synchronous) Detection Functions
|
|
|
|
| 67 |
# -----------------------------
|
| 68 |
def compute_posture_overlay(image):
|
| 69 |
+
# Convert to BGR for MediaPipe
|
| 70 |
+
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 71 |
+
h, w, _ = frame_bgr.shape
|
| 72 |
+
|
| 73 |
+
# 2) Downscale before processing (optional for posture)
|
| 74 |
+
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
|
| 75 |
+
small_h, small_w, _ = frame_bgr_small.shape
|
| 76 |
+
|
| 77 |
+
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
|
| 78 |
+
pose_results = pose.process(frame_rgb_small)
|
| 79 |
+
|
| 80 |
+
# Scale landmarks back up to original size if needed
|
| 81 |
if pose_results.pose_landmarks:
|
| 82 |
landmarks = []
|
| 83 |
for lm in pose_results.pose_landmarks.landmark:
|
| 84 |
+
# Rescale from the smaller frame to the original size
|
| 85 |
+
x = int(lm.x * small_w * (w / small_w))
|
| 86 |
+
y = int(lm.y * small_h * (h / small_h))
|
| 87 |
+
landmarks.append((x, y))
|
| 88 |
text = "Posture detected"
|
| 89 |
else:
|
| 90 |
landmarks = []
|
| 91 |
text = "No posture detected"
|
| 92 |
+
|
| 93 |
return landmarks, text
|
| 94 |
|
| 95 |
def compute_emotion_overlay(image):
|
| 96 |
+
# Convert to BGR
|
| 97 |
+
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 98 |
+
# 2) Downscale
|
| 99 |
+
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
|
| 100 |
+
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
|
| 101 |
+
|
| 102 |
+
emotions = emotion_detector.detect_emotions(frame_rgb_small)
|
| 103 |
if emotions:
|
| 104 |
top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1])
|
| 105 |
text = f"{top_emotion} ({score:.2f})"
|
|
|
|
| 108 |
return text
|
| 109 |
|
| 110 |
def compute_objects_overlay(image):
|
| 111 |
+
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 112 |
+
# 2) Downscale
|
| 113 |
+
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
|
| 114 |
+
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
|
| 115 |
+
|
| 116 |
+
image_pil = Image.fromarray(frame_rgb_small)
|
| 117 |
+
img_tensor = obj_transform(image_pil).to(device)
|
| 118 |
+
|
| 119 |
with torch.no_grad():
|
| 120 |
detections = object_detection_model([img_tensor])[0]
|
| 121 |
+
|
| 122 |
threshold = 0.8
|
| 123 |
boxes = []
|
| 124 |
for box, score in zip(detections["boxes"], detections["scores"]):
|
| 125 |
if score > threshold:
|
| 126 |
+
# box is in the scaled-down coordinates;
|
| 127 |
+
# you may want to scale them back to the original if needed
|
| 128 |
boxes.append(tuple(box.int().cpu().numpy()))
|
| 129 |
+
|
| 130 |
text = f"Detected {len(boxes)} object(s)" if boxes else "No objects detected"
|
| 131 |
return boxes, text
|
| 132 |
|
| 133 |
def compute_faces_overlay(image):
|
| 134 |
+
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 135 |
+
h, w, _ = frame_bgr.shape
|
| 136 |
+
# 2) Downscale
|
| 137 |
+
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
|
| 138 |
+
small_h, small_w, _ = frame_bgr_small.shape
|
| 139 |
+
|
| 140 |
+
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
|
| 141 |
+
face_results = face_detection.process(frame_rgb_small)
|
| 142 |
+
|
| 143 |
boxes = []
|
| 144 |
if face_results.detections:
|
| 145 |
for detection in face_results.detections:
|
| 146 |
bbox = detection.location_data.relative_bounding_box
|
| 147 |
+
x = int(bbox.xmin * small_w)
|
| 148 |
+
y = int(bbox.ymin * small_h)
|
| 149 |
+
box_w = int(bbox.width * small_w)
|
| 150 |
+
box_h = int(bbox.height * small_h)
|
| 151 |
+
# Scale bounding box coords back to original if you need full resolution
|
| 152 |
+
# E.g., x_original = int(x * (w / small_w)), etc.
|
| 153 |
boxes.append((x, y, x + box_w, y + box_h))
|
| 154 |
text = f"Detected {len(boxes)} face(s)"
|
| 155 |
else:
|
|
|
|
| 157 |
return boxes, text
|
| 158 |
|
| 159 |
# -----------------------------
|
| 160 |
+
# Main Analysis Functions
|
|
|
|
| 161 |
# -----------------------------
|
| 162 |
def analyze_posture_current(image):
|
| 163 |
global posture_cache
|
| 164 |
posture_cache["counter"] += 1
|
| 165 |
+
current_frame = np.array(image)
|
| 166 |
+
|
| 167 |
if posture_cache["counter"] % SKIP_RATE == 0 or posture_cache["landmarks"] is None:
|
| 168 |
landmarks, text = compute_posture_overlay(image)
|
| 169 |
posture_cache["landmarks"] = landmarks
|
| 170 |
posture_cache["text"] = text
|
| 171 |
+
|
| 172 |
output = current_frame.copy()
|
| 173 |
if posture_cache["landmarks"]:
|
| 174 |
output = draw_posture_overlay(output, posture_cache["landmarks"])
|
| 175 |
+
|
| 176 |
return output, f"Posture Analysis: {posture_cache['text']}"
|
| 177 |
|
| 178 |
def analyze_emotion_current(image):
|
| 179 |
global emotion_cache
|
| 180 |
emotion_cache["counter"] += 1
|
| 181 |
current_frame = np.array(image)
|
| 182 |
+
|
| 183 |
if emotion_cache["counter"] % SKIP_RATE == 0 or emotion_cache["text"] is None:
|
| 184 |
text = compute_emotion_overlay(image)
|
| 185 |
emotion_cache["text"] = text
|
| 186 |
+
|
| 187 |
return current_frame, f"Emotion Analysis: {emotion_cache['text']}"
|
| 188 |
|
| 189 |
def analyze_objects_current(image):
|
| 190 |
global objects_cache
|
| 191 |
objects_cache["counter"] += 1
|
| 192 |
current_frame = np.array(image)
|
| 193 |
+
|
| 194 |
if objects_cache["counter"] % SKIP_RATE == 0 or objects_cache["boxes"] is None:
|
| 195 |
boxes, text = compute_objects_overlay(image)
|
| 196 |
objects_cache["boxes"] = boxes
|
| 197 |
objects_cache["text"] = text
|
| 198 |
+
|
| 199 |
output = current_frame.copy()
|
| 200 |
if objects_cache["boxes"]:
|
| 201 |
output = draw_boxes_overlay(output, objects_cache["boxes"], (255, 255, 0))
|
| 202 |
+
|
| 203 |
return output, f"Object Detection: {objects_cache['text']}"
|
| 204 |
|
| 205 |
def analyze_faces_current(image):
|
| 206 |
global faces_cache
|
| 207 |
faces_cache["counter"] += 1
|
| 208 |
current_frame = np.array(image)
|
| 209 |
+
|
| 210 |
if faces_cache["counter"] % SKIP_RATE == 0 or faces_cache["boxes"] is None:
|
| 211 |
boxes, text = compute_faces_overlay(image)
|
| 212 |
faces_cache["boxes"] = boxes
|
| 213 |
faces_cache["text"] = text
|
| 214 |
+
|
| 215 |
output = current_frame.copy()
|
| 216 |
if faces_cache["boxes"]:
|
| 217 |
output = draw_boxes_overlay(output, faces_cache["boxes"], (0, 0, 255))
|
| 218 |
+
|
| 219 |
return output, f"Face Detection: {faces_cache['text']}"
|
| 220 |
|
| 221 |
# -----------------------------
|
| 222 |
+
# Custom CSS
|
| 223 |
# -----------------------------
|
| 224 |
custom_css = """
|
| 225 |
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');
|
|
|
|
| 252 |
"""
|
| 253 |
|
| 254 |
# -----------------------------
|
| 255 |
+
# Create Individual Interfaces
|
| 256 |
# -----------------------------
|
| 257 |
posture_interface = gr.Interface(
|
| 258 |
fn=analyze_posture_current,
|
|
|
|
| 260 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Posture Analysis")],
|
| 261 |
title="Posture Analysis",
|
| 262 |
description="Detects your posture using MediaPipe.",
|
| 263 |
+
live=True # Keep only this interface live to avoid multiple heavy computations
|
| 264 |
)
|
| 265 |
|
| 266 |
emotion_interface = gr.Interface(
|
|
|
|
| 269 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Emotion Analysis")],
|
| 270 |
title="Emotion Analysis",
|
| 271 |
description="Detects facial emotions using FER.",
|
| 272 |
+
live=False # Turn off streaming to reduce overhead
|
| 273 |
)
|
| 274 |
|
| 275 |
objects_interface = gr.Interface(
|
|
|
|
| 278 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Object Detection")],
|
| 279 |
title="Object Detection",
|
| 280 |
description="Detects objects using a pretrained Faster R-CNN.",
|
| 281 |
+
live=False
|
| 282 |
)
|
| 283 |
|
| 284 |
faces_interface = gr.Interface(
|
|
|
|
| 287 |
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Face Detection")],
|
| 288 |
title="Face Detection",
|
| 289 |
description="Detects faces using MediaPipe.",
|
| 290 |
+
live=False
|
| 291 |
)
|
| 292 |
|
| 293 |
# -----------------------------
|
| 294 |
+
# Create a Tabbed Interface
|
| 295 |
# -----------------------------
|
| 296 |
tabbed_interface = gr.TabbedInterface(
|
| 297 |
interface_list=[posture_interface, emotion_interface, objects_interface, faces_interface],
|
|
|
|
| 299 |
)
|
| 300 |
|
| 301 |
# -----------------------------
|
| 302 |
+
# Wrap in a Blocks Layout
|
| 303 |
# -----------------------------
|
| 304 |
demo = gr.Blocks(css=custom_css)
|
| 305 |
with demo:
|
| 306 |
gr.Markdown("<h1 class='gradio-title'>Real-Time Multi-Analysis App</h1>")
|
| 307 |
+
gr.Markdown(
|
| 308 |
+
"<p class='gradio-description'>Experience a high-tech cinematic interface for real-time "
|
| 309 |
+
"analysis of your posture, emotions, objects, and faces using your webcam.</p>"
|
| 310 |
+
)
|
| 311 |
tabbed_interface.render()
|
| 312 |
|
| 313 |
if __name__ == "__main__":
|