Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,10 +7,8 @@ from pydantic import BaseModel
|
|
| 7 |
from fastapi.responses import StreamingResponse
|
| 8 |
|
| 9 |
# --- Library Imports ---
|
| 10 |
-
# For NeMo models
|
| 11 |
from nemo.collections.tts.models import FastPitchModel, HifiGanModel
|
| 12 |
from nemo.collections.tts.torch.tts_tokenizers import BaseCharsTokenizer
|
| 13 |
-
# For Transformers MMS-TTS model
|
| 14 |
from transformers import AutoTokenizer, AutoModelForTextToWaveform
|
| 15 |
|
| 16 |
# Configure logging
|
|
@@ -26,12 +24,13 @@ app = FastAPI(
|
|
| 26 |
# --- 2. Load Models on Startup ---
|
| 27 |
models = {}
|
| 28 |
|
|
|
|
|
|
|
| 29 |
@app.on_event("startup")
|
| 30 |
def load_models():
|
| 31 |
"""Load all models into memory when the application starts."""
|
| 32 |
logger.info("Loading models...")
|
| 33 |
-
|
| 34 |
-
|
| 35 |
try:
|
| 36 |
# --- NeMo Models ---
|
| 37 |
logger.info("Loading HiFi-GAN vocoder...")
|
|
@@ -84,7 +83,6 @@ def synthesize_speech(request: TTSRequest):
|
|
| 84 |
|
| 85 |
lang = request.language.lower()
|
| 86 |
|
| 87 |
-
# Validate the requested language
|
| 88 |
valid_langs = ['en', 'bikol', 'tgl']
|
| 89 |
if lang not in valid_langs:
|
| 90 |
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=f"Invalid language. Use one of {valid_langs}")
|
|
@@ -92,7 +90,6 @@ def synthesize_speech(request: TTSRequest):
|
|
| 92 |
try:
|
| 93 |
logger.info(f"--- STARTING SYNTHESIS for '{lang}' ---")
|
| 94 |
|
| 95 |
-
# --- Logic for NeMo Models (English, Bikol) ---
|
| 96 |
if lang in ['en', 'bikol']:
|
| 97 |
sample_rate = 22050
|
| 98 |
spectrogram_generator = models[lang]
|
|
@@ -105,9 +102,8 @@ def synthesize_speech(request: TTSRequest):
|
|
| 105 |
|
| 106 |
audio_numpy = audio.to('cpu').detach().numpy().squeeze()
|
| 107 |
|
| 108 |
-
# --- Logic for Transformers Model (Tagalog) ---
|
| 109 |
elif lang == 'tgl':
|
| 110 |
-
sample_rate = 16000
|
| 111 |
tokenizer = models['tgl_tokenizer']
|
| 112 |
model = models['tgl_model']
|
| 113 |
|
|
@@ -117,7 +113,6 @@ def synthesize_speech(request: TTSRequest):
|
|
| 117 |
|
| 118 |
audio_numpy = output.cpu().numpy().squeeze()
|
| 119 |
|
| 120 |
-
# --- Prepare and return audio file ---
|
| 121 |
buffer = io.BytesIO()
|
| 122 |
sf.write(buffer, audio_numpy, samplerate=sample_rate, format='WAV')
|
| 123 |
buffer.seek(0)
|
|
@@ -134,8 +129,7 @@ def synthesize_speech(request: TTSRequest):
|
|
| 134 |
# --- 5. Add a Root Endpoint for Health Check ---
|
| 135 |
@app.get("/")
|
| 136 |
def read_root():
|
| 137 |
-
|
| 138 |
-
available_languages = [k for k in models.keys() if '_model' not in k and k != 'hifigan']
|
| 139 |
return {
|
| 140 |
"status": "Multilingual TTS Backend is running",
|
| 141 |
"available_languages": available_languages,
|
|
|
|
| 7 |
from fastapi.responses import StreamingResponse
|
| 8 |
|
| 9 |
# --- Library Imports ---
|
|
|
|
| 10 |
from nemo.collections.tts.models import FastPitchModel, HifiGanModel
|
| 11 |
from nemo.collections.tts.torch.tts_tokenizers import BaseCharsTokenizer
|
|
|
|
| 12 |
from transformers import AutoTokenizer, AutoModelForTextToWaveform
|
| 13 |
|
| 14 |
# Configure logging
|
|
|
|
| 24 |
# --- 2. Load Models on Startup ---
|
| 25 |
models = {}
|
| 26 |
|
| 27 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 28 |
+
|
| 29 |
@app.on_event("startup")
|
| 30 |
def load_models():
|
| 31 |
"""Load all models into memory when the application starts."""
|
| 32 |
logger.info("Loading models...")
|
| 33 |
+
|
|
|
|
| 34 |
try:
|
| 35 |
# --- NeMo Models ---
|
| 36 |
logger.info("Loading HiFi-GAN vocoder...")
|
|
|
|
| 83 |
|
| 84 |
lang = request.language.lower()
|
| 85 |
|
|
|
|
| 86 |
valid_langs = ['en', 'bikol', 'tgl']
|
| 87 |
if lang not in valid_langs:
|
| 88 |
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=f"Invalid language. Use one of {valid_langs}")
|
|
|
|
| 90 |
try:
|
| 91 |
logger.info(f"--- STARTING SYNTHESIS for '{lang}' ---")
|
| 92 |
|
|
|
|
| 93 |
if lang in ['en', 'bikol']:
|
| 94 |
sample_rate = 22050
|
| 95 |
spectrogram_generator = models[lang]
|
|
|
|
| 102 |
|
| 103 |
audio_numpy = audio.to('cpu').detach().numpy().squeeze()
|
| 104 |
|
|
|
|
| 105 |
elif lang == 'tgl':
|
| 106 |
+
sample_rate = 16000
|
| 107 |
tokenizer = models['tgl_tokenizer']
|
| 108 |
model = models['tgl_model']
|
| 109 |
|
|
|
|
| 113 |
|
| 114 |
audio_numpy = output.cpu().numpy().squeeze()
|
| 115 |
|
|
|
|
| 116 |
buffer = io.BytesIO()
|
| 117 |
sf.write(buffer, audio_numpy, samplerate=sample_rate, format='WAV')
|
| 118 |
buffer.seek(0)
|
|
|
|
| 129 |
# --- 5. Add a Root Endpoint for Health Check ---
|
| 130 |
@app.get("/")
|
| 131 |
def read_root():
|
| 132 |
+
available_languages = ['en', 'bikol', 'tgl']
|
|
|
|
| 133 |
return {
|
| 134 |
"status": "Multilingual TTS Backend is running",
|
| 135 |
"available_languages": available_languages,
|