Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,33 +4,79 @@ import requests
|
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
def avaliable_providers():
|
| 8 |
providers = []
|
| 9 |
-
|
| 10 |
headers = {
|
| 11 |
"Content-Type": "application/json",
|
| 12 |
}
|
| 13 |
-
endpoint_url = "https://api.endpoints.huggingface.cloud/provider"
|
| 14 |
response = requests.get(endpoint_url, headers=headers)
|
| 15 |
|
| 16 |
-
|
|
|
|
|
|
|
| 17 |
if provider['status'] == 'available':
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
return providers
|
| 21 |
|
|
|
|
|
|
|
| 22 |
def update_regions(provider):
|
| 23 |
avalialbe_regions = []
|
| 24 |
-
|
| 25 |
-
headers = {
|
| 26 |
-
"Content-Type": "application/json",
|
| 27 |
-
}
|
| 28 |
-
endpoint_url = f"https://api.endpoints.huggingface.cloud/provider/{provider}/region"
|
| 29 |
-
response = requests.get(endpoint_url, headers=headers)
|
| 30 |
|
| 31 |
-
for region in
|
| 32 |
-
|
| 33 |
-
avalialbe_regions.append(f"{region['region']}/{region['label']}")
|
| 34 |
|
| 35 |
return gr.Dropdown.update(
|
| 36 |
choices=avalialbe_regions,
|
|
@@ -38,28 +84,22 @@ def update_regions(provider):
|
|
| 38 |
)
|
| 39 |
|
| 40 |
def update_compute_options(provider, region):
|
| 41 |
-
region = region.split("/")[0]
|
| 42 |
avalialbe_compute_options = []
|
|
|
|
| 43 |
|
| 44 |
-
|
| 45 |
-
"Content-Type": "application/json",
|
| 46 |
-
}
|
| 47 |
-
endpoint_url = f"https://api.endpoints.huggingface.cloud/provider/{provider}/region/{region}/compute"
|
| 48 |
-
print(endpoint_url)
|
| 49 |
-
response = requests.get(endpoint_url, headers=headers)
|
| 50 |
-
|
| 51 |
-
for compute in response.json()['items']:
|
| 52 |
if compute['status'] == 'available':
|
| 53 |
accelerator = compute['accelerator']
|
| 54 |
numAccelerators = compute['numAccelerators']
|
| 55 |
memoryGb = compute['memoryGb']
|
| 56 |
architecture = compute['architecture']
|
| 57 |
instanceType = compute['instanceType']
|
| 58 |
-
|
|
|
|
| 59 |
type = f"{numAccelerators}vCPU {memoryGb} Β· {architecture}" if accelerator == "cpu" else f"{numAccelerators}x {architecture}"
|
| 60 |
-
|
| 61 |
avalialbe_compute_options.append(
|
| 62 |
-
f"{compute['accelerator'].upper()} [{compute['instanceSize']}] Β· {type} Β· {instanceType}"
|
| 63 |
)
|
| 64 |
|
| 65 |
return gr.Dropdown.update(
|
|
@@ -77,9 +117,9 @@ def submit(
|
|
| 77 |
task_selector,
|
| 78 |
framework_selector,
|
| 79 |
compute_selector,
|
| 80 |
-
min_node_selector,
|
| 81 |
-
max_node_selector,
|
| 82 |
-
security_selector
|
| 83 |
):
|
| 84 |
compute_resources = compute_selector.split("Β·")
|
| 85 |
accelerator = compute_resources[0][:3].strip()
|
|
@@ -89,7 +129,7 @@ def submit(
|
|
| 89 |
size = compute_resources[0][size_l_index : size_r_index].strip()
|
| 90 |
|
| 91 |
type = compute_resources[-1].strip()
|
| 92 |
-
|
| 93 |
payload = {
|
| 94 |
"accountId": hf_account_input.strip(),
|
| 95 |
"compute": {
|
|
@@ -107,7 +147,7 @@ def submit(
|
|
| 107 |
"huggingface": {}
|
| 108 |
},
|
| 109 |
"repository": repository_selector.lower(),
|
| 110 |
-
"revision":
|
| 111 |
"task": task_selector.lower()
|
| 112 |
},
|
| 113 |
"name": endpoint_name_input.strip(),
|
|
@@ -117,7 +157,7 @@ def submit(
|
|
| 117 |
},
|
| 118 |
"type": security_selector.lower()
|
| 119 |
}
|
| 120 |
-
|
| 121 |
print(payload)
|
| 122 |
|
| 123 |
payload = json.dumps(payload)
|
|
@@ -127,7 +167,7 @@ def submit(
|
|
| 127 |
"Authorization": f"Bearer {hf_token_input.strip()}",
|
| 128 |
"Content-Type": "application/json",
|
| 129 |
}
|
| 130 |
-
endpoint_url = f"https://api.endpoints.huggingface.cloud/endpoint"
|
| 131 |
print(endpoint_url)
|
| 132 |
|
| 133 |
response = requests.post(endpoint_url, headers=headers, data=payload)
|
|
@@ -143,215 +183,259 @@ def submit(
|
|
| 143 |
else:
|
| 144 |
return f"something went wrong {response.status_code} = {response.text}"
|
| 145 |
|
| 146 |
-
with gr.Blocks() as hf_endpoint:
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
)
|
| 217 |
|
| 218 |
-
|
| 219 |
-
value=
|
| 220 |
interactive=False,
|
| 221 |
-
|
| 222 |
-
)
|
| 223 |
-
|
| 224 |
-
with gr.Row():
|
| 225 |
-
gr.Markdown("""
|
| 226 |
-
#### Task
|
| 227 |
-
""")
|
| 228 |
-
|
| 229 |
-
gr.Markdown("""
|
| 230 |
-
#### Framework
|
| 231 |
-
""")
|
| 232 |
-
|
| 233 |
-
with gr.Row():
|
| 234 |
-
task_selector = gr.Textbox(
|
| 235 |
-
value="Custom",
|
| 236 |
-
interactive=False,
|
| 237 |
-
show_label=False,
|
| 238 |
-
)
|
| 239 |
-
|
| 240 |
-
framework_selector = gr.Textbox(
|
| 241 |
-
value="TensorFlow",
|
| 242 |
-
interactive=False,
|
| 243 |
-
show_label=False,
|
| 244 |
)
|
| 245 |
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
gr.Markdown("""
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
)
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
value=1,
|
| 280 |
-
interactive=True,
|
| 281 |
-
show_label=False,
|
| 282 |
-
)
|
| 283 |
-
|
| 284 |
-
security_selector = gr.Radio(
|
| 285 |
-
choices=["Protected", "Public", "Private"],
|
| 286 |
-
value="Public",
|
| 287 |
-
interactive=True,
|
| 288 |
-
show_label=False,
|
| 289 |
-
)
|
| 290 |
-
|
| 291 |
-
submit_button = gr.Button(
|
| 292 |
-
value="Submit",
|
| 293 |
-
)
|
| 294 |
-
|
| 295 |
-
status_txt = gr.Textbox(
|
| 296 |
-
value="any status update will be displayed here",
|
| 297 |
-
interactive=False
|
| 298 |
-
)
|
| 299 |
-
|
| 300 |
-
submit_button.click(
|
| 301 |
-
submit,
|
| 302 |
-
inputs=[
|
| 303 |
-
hf_account_input,
|
| 304 |
-
hf_token_input,
|
| 305 |
-
endpoint_name_input,
|
| 306 |
-
provider_selector,
|
| 307 |
-
region_selector,
|
| 308 |
-
repository_selector,
|
| 309 |
-
task_selector,
|
| 310 |
-
framework_selector,
|
| 311 |
-
compute_selector,
|
| 312 |
-
min_node_selector,
|
| 313 |
-
max_node_selector,
|
| 314 |
-
security_selector],
|
| 315 |
-
outputs=status_txt)
|
| 316 |
-
|
| 317 |
-
gr.Markdown("""
|
| 318 |
-
#### Pricing Table(CPU) - 2023/1/11
|
| 319 |
-
""")
|
| 320 |
-
|
| 321 |
-
gr.Dataframe(
|
| 322 |
-
headers=["provider", "size", "$/h", "vCPUs", "Memory", "Architecture"],
|
| 323 |
-
datatype=["str", "str", "str", "number", "str", "str"],
|
| 324 |
-
row_count=8,
|
| 325 |
-
col_count=(6, "fixed"),
|
| 326 |
-
value=[
|
| 327 |
-
["aws", "small", "$0.06", 1, "2GB", "Intel Xeon - Ice Lake"],
|
| 328 |
-
["aws", "medium", "$0.12", 2, "4GB", "Intel Xeon - Ice Lake"],
|
| 329 |
-
["aws", "large", "$0.24", 4, "8GB", "Intel Xeon - Ice Lake"],
|
| 330 |
-
["aws", "xlarge", "$0.48", 8, "16GB", "Intel Xeon - Ice Lake"],
|
| 331 |
-
["azure", "small", "$0.06", 1, "2GB", "Intel Xeon"],
|
| 332 |
-
["azure", "medium", "$0.12", 2, "4GB", "Intel Xeon"],
|
| 333 |
-
["azure", "large", "$0.24", 4, "8GB", "Intel Xeon"],
|
| 334 |
-
["azure", "xlarge", "$0.48", 8, "16GB", "Intel Xeon"],
|
| 335 |
-
]
|
| 336 |
-
)
|
| 337 |
-
|
| 338 |
-
gr.Markdown("""
|
| 339 |
-
#### Pricing Table(GPU) - 2023/1/11
|
| 340 |
-
""")
|
| 341 |
-
|
| 342 |
-
gr.Dataframe(
|
| 343 |
-
headers=["provider", "size", "$/h", "GPUs", "Memory", "Architecture"],
|
| 344 |
-
datatype=["str", "str", "str", "number", "str", "str"],
|
| 345 |
-
row_count=6,
|
| 346 |
-
col_count=(6, "fixed"),
|
| 347 |
-
value=[
|
| 348 |
-
["aws", "small", "$0.60", 1, "14GB", "NVIDIA T4"],
|
| 349 |
-
["aws", "medium", "$1.30", 1, "24GB", "NVIDIA A10G"],
|
| 350 |
-
["aws", "large", "$4.50", 4, "156B", "NVIDIA T4"],
|
| 351 |
-
["aws", "xlarge", "$6.50", 1, "80GB", "NVIDIA A100"],
|
| 352 |
-
["aws", "xxlarge", "$7.00", 4, "96GB", "NVIDIA A10G"],
|
| 353 |
-
["aws", "xxxlarge", "$45.0", 8, "640GB", "NVIDIA A100"],
|
| 354 |
-
]
|
| 355 |
-
)
|
| 356 |
-
|
| 357 |
-
hf_endpoint.launch(enable_queue=True)
|
|
|
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
|
| 7 |
+
STYLE = """
|
| 8 |
+
.group-border {
|
| 9 |
+
padding: 10px;
|
| 10 |
+
border-width: 1px;
|
| 11 |
+
border-radius: 10px;
|
| 12 |
+
border-color: gray;
|
| 13 |
+
border-style: dashed;
|
| 14 |
+
box-shadow: 1px 1px 3px;
|
| 15 |
+
}
|
| 16 |
+
.control-label-font {
|
| 17 |
+
font-size: 13pt !important;
|
| 18 |
+
}
|
| 19 |
+
.control-button {
|
| 20 |
+
background: none !important;
|
| 21 |
+
border-color: #69ade2 !important;
|
| 22 |
+
border-width: 2px !important;
|
| 23 |
+
color: #69ade2 !important;
|
| 24 |
+
}
|
| 25 |
+
.center {
|
| 26 |
+
text-align: center;
|
| 27 |
+
}
|
| 28 |
+
.right {
|
| 29 |
+
text-align: right;
|
| 30 |
+
}
|
| 31 |
+
.no-label {
|
| 32 |
+
padding: 0px !important;
|
| 33 |
+
}
|
| 34 |
+
.no-label > label > span {
|
| 35 |
+
display: none;
|
| 36 |
+
}
|
| 37 |
+
.small-big {
|
| 38 |
+
font-size: 12pt !important;
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
def avaliable_providers():
|
| 44 |
providers = []
|
| 45 |
+
|
| 46 |
headers = {
|
| 47 |
"Content-Type": "application/json",
|
| 48 |
}
|
| 49 |
+
endpoint_url = "https://api.endpoints.huggingface.cloud/v2/provider"
|
| 50 |
response = requests.get(endpoint_url, headers=headers)
|
| 51 |
|
| 52 |
+
providers = {}
|
| 53 |
+
|
| 54 |
+
for provider in response.json()['vendors']:
|
| 55 |
if provider['status'] == 'available':
|
| 56 |
+
regions = {}
|
| 57 |
+
|
| 58 |
+
availability = False
|
| 59 |
+
for region in provider['regions']:
|
| 60 |
+
if region["status"] == "available":
|
| 61 |
+
regions[region['name']] = {
|
| 62 |
+
"label": region['label'],
|
| 63 |
+
"computes": region['computes']
|
| 64 |
+
}
|
| 65 |
+
availability = True
|
| 66 |
+
|
| 67 |
+
if availability:
|
| 68 |
+
providers[provider['name']] = regions
|
| 69 |
+
|
| 70 |
return providers
|
| 71 |
|
| 72 |
+
providers = avaliable_providers()
|
| 73 |
+
|
| 74 |
def update_regions(provider):
|
| 75 |
avalialbe_regions = []
|
| 76 |
+
regions = providers[provider]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
+
for region, attributes in regions.items():
|
| 79 |
+
avalialbe_regions.append(f"{region}[{attributes['label']}]")
|
|
|
|
| 80 |
|
| 81 |
return gr.Dropdown.update(
|
| 82 |
choices=avalialbe_regions,
|
|
|
|
| 84 |
)
|
| 85 |
|
| 86 |
def update_compute_options(provider, region):
|
|
|
|
| 87 |
avalialbe_compute_options = []
|
| 88 |
+
computes = providers[provider][region.split("[")[0].strip()]["computes"]
|
| 89 |
|
| 90 |
+
for compute in computes:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
if compute['status'] == 'available':
|
| 92 |
accelerator = compute['accelerator']
|
| 93 |
numAccelerators = compute['numAccelerators']
|
| 94 |
memoryGb = compute['memoryGb']
|
| 95 |
architecture = compute['architecture']
|
| 96 |
instanceType = compute['instanceType']
|
| 97 |
+
pricePerHour = compute['pricePerHour']
|
| 98 |
+
|
| 99 |
type = f"{numAccelerators}vCPU {memoryGb} Β· {architecture}" if accelerator == "cpu" else f"{numAccelerators}x {architecture}"
|
| 100 |
+
|
| 101 |
avalialbe_compute_options.append(
|
| 102 |
+
f"{compute['accelerator'].upper()} [{compute['instanceSize']}] Β· {type} Β· {instanceType} Β· ${pricePerHour}/hour"
|
| 103 |
)
|
| 104 |
|
| 105 |
return gr.Dropdown.update(
|
|
|
|
| 117 |
task_selector,
|
| 118 |
framework_selector,
|
| 119 |
compute_selector,
|
| 120 |
+
min_node_selector,
|
| 121 |
+
max_node_selector,
|
| 122 |
+
security_selector
|
| 123 |
):
|
| 124 |
compute_resources = compute_selector.split("Β·")
|
| 125 |
accelerator = compute_resources[0][:3].strip()
|
|
|
|
| 129 |
size = compute_resources[0][size_l_index : size_r_index].strip()
|
| 130 |
|
| 131 |
type = compute_resources[-1].strip()
|
| 132 |
+
|
| 133 |
payload = {
|
| 134 |
"accountId": hf_account_input.strip(),
|
| 135 |
"compute": {
|
|
|
|
| 147 |
"huggingface": {}
|
| 148 |
},
|
| 149 |
"repository": repository_selector.lower(),
|
| 150 |
+
"revision": "main",
|
| 151 |
"task": task_selector.lower()
|
| 152 |
},
|
| 153 |
"name": endpoint_name_input.strip(),
|
|
|
|
| 157 |
},
|
| 158 |
"type": security_selector.lower()
|
| 159 |
}
|
| 160 |
+
|
| 161 |
print(payload)
|
| 162 |
|
| 163 |
payload = json.dumps(payload)
|
|
|
|
| 167 |
"Authorization": f"Bearer {hf_token_input.strip()}",
|
| 168 |
"Content-Type": "application/json",
|
| 169 |
}
|
| 170 |
+
endpoint_url = f"https://api.endpoints.huggingface.cloud/v2/endpoint"
|
| 171 |
print(endpoint_url)
|
| 172 |
|
| 173 |
response = requests.post(endpoint_url, headers=headers, data=payload)
|
|
|
|
| 183 |
else:
|
| 184 |
return f"something went wrong {response.status_code} = {response.text}"
|
| 185 |
|
| 186 |
+
with gr.Blocks(css=STYLE) as hf_endpoint:
|
| 187 |
+
with gr.Tab("π€ Inference Endpoint"):
|
| 188 |
+
gr.Markdown("# Deploy LLM on π€ Hugging Face Inference Endpoint", elem_classes=["center"])
|
| 189 |
+
|
| 190 |
+
with gr.Column(elem_classes=["group-border"]):
|
| 191 |
+
with gr.Row():
|
| 192 |
+
with gr.Column():
|
| 193 |
+
gr.Markdown("""## Hugging Face account ID (name)""")
|
| 194 |
+
hf_account_input = gr.Textbox(show_label=False, elem_classes=["no-label", "small-big"])
|
| 195 |
+
|
| 196 |
+
with gr.Column():
|
| 197 |
+
gr.Markdown("## Hugging Face access token")
|
| 198 |
+
hf_token_input = gr.Textbox(show_label=False, type="password", elem_classes=["no-label", "small-big"])
|
| 199 |
+
|
| 200 |
+
with gr.Row():
|
| 201 |
+
with gr.Column():
|
| 202 |
+
gr.Markdown("""## Target model
|
| 203 |
+
|
| 204 |
+
Import a model from the Hugging Face hub""")
|
| 205 |
+
repository_selector = gr.Textbox(
|
| 206 |
+
value="NousResearch/Nous-Hermes-Llama2-70b",
|
| 207 |
+
interactive=False,
|
| 208 |
+
show_label=False,
|
| 209 |
+
elem_classes=["no-label", "small-big"]
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
with gr.Column():
|
| 213 |
+
gr.Markdown("""## Target model version(branch)
|
| 214 |
+
|
| 215 |
+
Specify the branch name""")
|
| 216 |
+
revision_selector = gr.Textbox(
|
| 217 |
+
value=f"main",
|
| 218 |
+
interactive=False,
|
| 219 |
+
show_label=False,
|
| 220 |
+
elem_classes=["no-label", "small-big"]
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
with gr.Column(elem_classes=["group-border"]):
|
| 224 |
+
with gr.Column():
|
| 225 |
+
gr.Markdown("""## Endpoint name
|
| 226 |
+
|
| 227 |
+
Input a name for your new endpoint""")
|
| 228 |
+
endpoint_name_input = gr.Textbox(show_label=False, elem_classes=["no-label", "small-big"])
|
| 229 |
+
|
| 230 |
+
with gr.Row():
|
| 231 |
+
with gr.Column():
|
| 232 |
+
gr.Markdown("""## Cloud Provider
|
| 233 |
+
|
| 234 |
+
Choose between Amazon Web Services and Microsoft Azure""")
|
| 235 |
+
provider_selector = gr.Dropdown(
|
| 236 |
+
choices=providers.keys(),
|
| 237 |
+
interactive=True,
|
| 238 |
+
show_label=False,
|
| 239 |
+
elem_classes=["no-label", "small-big"]
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
with gr.Column():
|
| 243 |
+
gr.Markdown("""## Cloud Region
|
| 244 |
+
|
| 245 |
+
Choose one of the regions from each cloud provider""")
|
| 246 |
+
region_selector = gr.Dropdown(
|
| 247 |
+
[],
|
| 248 |
+
value="",
|
| 249 |
+
interactive=True,
|
| 250 |
+
show_label=False,
|
| 251 |
+
elem_classes=["no-label", "small-big"]
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
with gr.Row(visible=False):
|
| 255 |
+
with gr.Column():
|
| 256 |
+
gr.Markdown("## Task")
|
| 257 |
+
task_selector = gr.Textbox(
|
| 258 |
+
value="Text Generation",
|
| 259 |
+
interactive=False,
|
| 260 |
+
show_label=False,
|
| 261 |
+
elem_classes=["no-label", "small-big"]
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
with gr.Column():
|
| 265 |
+
gr.Markdown("## Framework")
|
| 266 |
+
framework_selector = gr.Textbox(
|
| 267 |
+
value="PyTorch",
|
| 268 |
+
interactive=False,
|
| 269 |
+
show_label=False,
|
| 270 |
+
elem_classes=["no-label", "small-big"]
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
with gr.Column():
|
| 274 |
+
gr.Markdown("""## Select Compute Instance Type
|
| 275 |
+
|
| 276 |
+
Select a CPU or GPU accelerated compute option for inference""")
|
| 277 |
+
compute_selector = gr.Dropdown(
|
| 278 |
+
[],
|
| 279 |
+
value="",
|
| 280 |
+
interactive=True,
|
| 281 |
+
show_label=False,
|
| 282 |
+
elem_classes=["no-label", "small-big"]
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
with gr.Row():
|
| 286 |
+
with gr.Column():
|
| 287 |
+
gr.Markdown("""## Min Number of Nodes
|
| 288 |
+
|
| 289 |
+
Automatically scale the number of replicas based on load and compute usage""")
|
| 290 |
+
min_node_selector = gr.Number(
|
| 291 |
+
value=1,
|
| 292 |
+
interactive=True,
|
| 293 |
+
show_label=False,
|
| 294 |
+
elem_classes=["no-label", "small-big"]
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
with gr.Column():
|
| 298 |
+
gr.Markdown("""## Max Number of Nodes
|
| 299 |
+
|
| 300 |
+
Automatically scale the number of replicas based on load and compute usage""")
|
| 301 |
+
max_node_selector = gr.Number(
|
| 302 |
+
value=1,
|
| 303 |
+
interactive=True,
|
| 304 |
+
show_label=False,
|
| 305 |
+
elem_classes=["no-label", "small-big"]
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
with gr.Column():
|
| 309 |
+
gr.Markdown("""## Security Level
|
| 310 |
+
|
| 311 |
+
Choose your endpoint's level of privacy""")
|
| 312 |
+
security_selector = gr.Radio(
|
| 313 |
+
choices=["Protected", "Public", "Private"],
|
| 314 |
+
value="Public",
|
| 315 |
+
interactive=True,
|
| 316 |
+
show_label=False,
|
| 317 |
+
elem_classes=["no-label", "small-big"]
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
with gr.Column(elem_classes=["group-border"]):
|
| 321 |
+
with gr.Column():
|
| 322 |
+
gr.Markdown("""## Container Type
|
| 323 |
+
|
| 324 |
+
Text Generation Inference is an optimized container for text generation task""")
|
| 325 |
+
_ = gr.Textbox("Text Generation Inference", show_label=False, elem_classes=["no-label", "small-big"])
|
| 326 |
+
|
| 327 |
+
with gr.Row():
|
| 328 |
+
with gr.Column():
|
| 329 |
+
gr.Markdown("""## Custom Cuda Kernels
|
| 330 |
+
|
| 331 |
+
TGI uses custom kernels to speed up inference for some models. You can try disabling them if you encounter issues.""")
|
| 332 |
+
_ = gr.Dropdown(
|
| 333 |
+
value="Enabled",
|
| 334 |
+
choices=["Enabled", "Disabled"],
|
| 335 |
+
interactive=True,
|
| 336 |
+
show_label=False,
|
| 337 |
+
elem_classes=["no-label", "small-big"]
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
with gr.Column():
|
| 341 |
+
gr.Markdown("""## Quantization
|
| 342 |
+
|
| 343 |
+
Quantization can reduce the model size and improve latency, with little degradation in model accuracy.""")
|
| 344 |
+
_ = gr.Dropdown(
|
| 345 |
+
value="None",
|
| 346 |
+
choices=["None", "Bitsandbytes", "GPTQ"],
|
| 347 |
+
interactive=True,
|
| 348 |
+
show_label=False,
|
| 349 |
+
elem_classes=["no-label", "small-big"]
|
| 350 |
+
)
|
| 351 |
+
|
| 352 |
+
with gr.Row():
|
| 353 |
+
with gr.Column():
|
| 354 |
+
gr.Markdown("""## Max Input Length (per Query)
|
| 355 |
+
|
| 356 |
+
Increasing this value can impact the amount of RAM required. Some models can only handle a finite range of sequences.""")
|
| 357 |
+
_ = gr.Number(
|
| 358 |
+
value=1024,
|
| 359 |
+
interactive=True,
|
| 360 |
+
show_label=False,
|
| 361 |
+
elem_classes=["no-label", "small-big"]
|
| 362 |
+
)
|
| 363 |
+
|
| 364 |
+
with gr.Column():
|
| 365 |
+
gr.Markdown("""## Max Number of Tokens (per Query)
|
| 366 |
+
|
| 367 |
+
The larger this value, the more memory each request will consume and the less effective batching can be.""")
|
| 368 |
+
_ = gr.Number(
|
| 369 |
+
value=1512,
|
| 370 |
+
interactive=True,
|
| 371 |
+
show_label=False,
|
| 372 |
+
elem_classes=["no-label", "small-big"]
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
with gr.Row():
|
| 376 |
+
with gr.Column():
|
| 377 |
+
gr.Markdown("""## Max Batch Prefill Tokens
|
| 378 |
+
|
| 379 |
+
Number of prefill tokens used during continuous batching. It can be useful to adjust this number since the prefill operation is memory-intensive and compute-bound.""")
|
| 380 |
+
_ = gr.Number(
|
| 381 |
+
value=2048,
|
| 382 |
+
interactive=True,
|
| 383 |
+
show_label=False,
|
| 384 |
+
elem_classes=["no-label", "small-big"]
|
| 385 |
+
)
|
| 386 |
+
|
| 387 |
+
with gr.Column():
|
| 388 |
+
gr.Markdown("""## Max Batch Total Tokens
|
| 389 |
+
|
| 390 |
+
Number of tokens that can be passed before forcing waiting queries to be put on the batch. A value of 1000 can fit 10 queries of 100 tokens or a single query of 1000 tokens.""")
|
| 391 |
+
_ = gr.Number(
|
| 392 |
+
value=None,
|
| 393 |
+
interactive=True,
|
| 394 |
+
show_label=False,
|
| 395 |
+
elem_classes=["no-label", "small-big"]
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
submit_button = gr.Button(
|
| 399 |
+
value="Submit",
|
| 400 |
+
elem_classes=["control-label-font", "control-button"]
|
| 401 |
)
|
| 402 |
|
| 403 |
+
status_txt = gr.Textbox(
|
| 404 |
+
value="any status update will be displayed here",
|
| 405 |
interactive=False,
|
| 406 |
+
elem_classes=["no-label"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 407 |
)
|
| 408 |
|
| 409 |
+
provider_selector.change(update_regions, inputs=provider_selector, outputs=region_selector)
|
| 410 |
+
region_selector.change(update_compute_options, inputs=[provider_selector, region_selector], outputs=compute_selector)
|
| 411 |
+
|
| 412 |
+
submit_button.click(
|
| 413 |
+
submit,
|
| 414 |
+
inputs=[
|
| 415 |
+
hf_account_input,
|
| 416 |
+
hf_token_input,
|
| 417 |
+
endpoint_name_input,
|
| 418 |
+
provider_selector,
|
| 419 |
+
region_selector,
|
| 420 |
+
repository_selector,
|
| 421 |
+
task_selector,
|
| 422 |
+
framework_selector,
|
| 423 |
+
compute_selector,
|
| 424 |
+
min_node_selector,
|
| 425 |
+
max_node_selector,
|
| 426 |
+
security_selector],
|
| 427 |
+
outputs=status_txt)
|
| 428 |
+
|
| 429 |
+
with gr.Tab("AWS"):
|
| 430 |
+
gr.Markdown("# Deploy LLM on π€ Hugging Face Inference Endpoint", elem_classes=["center"])
|
| 431 |
+
|
| 432 |
+
with gr.Tab("GCP"):
|
| 433 |
+
gr.Markdown("# Deploy LLM on π€ Hugging Face Inference Endpoint", elem_classes=["center"])
|
| 434 |
+
|
| 435 |
+
with gr.Tab("Azure"):
|
| 436 |
+
gr.Markdown("# Deploy LLM on π€ Hugging Face Inference Endpoint", elem_classes=["center"])
|
| 437 |
+
|
| 438 |
+
with gr.Tab("Lambdalabs"):
|
| 439 |
+
gr.Markdown("# Deploy LLM on π€ Hugging Face Inference Endpoint", elem_classes=["center"])
|
| 440 |
+
|
| 441 |
+
hf_endpoint.launch(enable_queue=True, debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|