Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# https://python.langchain.com/docs/tutorials/rag/
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from langchain import hub
|
| 4 |
+
from langchain_chroma import Chroma
|
| 5 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 6 |
+
from langchain_core.runnables import RunnablePassthrough
|
| 7 |
+
from langchain_mistralai import MistralAIEmbeddings
|
| 8 |
+
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
|
| 9 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 10 |
+
from langchain_mistralai import ChatMistralAI
|
| 11 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 12 |
+
import requests
|
| 13 |
+
from pathlib import Path
|
| 14 |
+
from langchain_community.document_loaders import WebBaseLoader
|
| 15 |
+
import bs4
|
| 16 |
+
from langchain_core.rate_limiters import InMemoryRateLimiter
|
| 17 |
+
from urllib.parse import urljoin
|
| 18 |
+
|
| 19 |
+
rate_limiter = InMemoryRateLimiter(
|
| 20 |
+
requests_per_second=0.1, # <-- MistralAI free. We can only make a request once every second
|
| 21 |
+
check_every_n_seconds=0.01, # Wake up every 100 ms to check whether allowed to make a request,
|
| 22 |
+
max_bucket_size=10, # Controls the maximum burst size.
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
# get data
|
| 26 |
+
urlsfile = open("urls.txt")
|
| 27 |
+
urls = urlsfile.readlines()
|
| 28 |
+
urls = [url.replace("\n","") for url in urls]
|
| 29 |
+
urlsfile.close()
|
| 30 |
+
|
| 31 |
+
# Load, chunk and index the contents of the blog.
|
| 32 |
+
loader = WebBaseLoader(urls)
|
| 33 |
+
docs = loader.load()
|
| 34 |
+
|
| 35 |
+
def format_docs(docs):
|
| 36 |
+
return "\n\n".join(doc.page_content for doc in docs)
|
| 37 |
+
|
| 38 |
+
def RAG(llm, docs, embeddings):
|
| 39 |
+
|
| 40 |
+
# Split text
|
| 41 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 42 |
+
splits = text_splitter.split_documents(docs)
|
| 43 |
+
|
| 44 |
+
# Create vector store
|
| 45 |
+
vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings)
|
| 46 |
+
|
| 47 |
+
# Retrieve and generate using the relevant snippets of the documents
|
| 48 |
+
retriever = vectorstore.as_retriever()
|
| 49 |
+
|
| 50 |
+
# Prompt basis example for RAG systems
|
| 51 |
+
prompt = hub.pull("rlm/rag-prompt")
|
| 52 |
+
|
| 53 |
+
# Create the chain
|
| 54 |
+
rag_chain = (
|
| 55 |
+
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
| 56 |
+
| prompt
|
| 57 |
+
| llm
|
| 58 |
+
| StrOutputParser()
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
return rag_chain
|
| 62 |
+
|
| 63 |
+
# LLM model
|
| 64 |
+
llm = ChatMistralAI(model="mistral-large-latest", rate_limiter=rate_limiter)
|
| 65 |
+
|
| 66 |
+
# Embeddings
|
| 67 |
+
embed_model = "sentence-transformers/multi-qa-distilbert-cos-v1"
|
| 68 |
+
# embed_model = "nvidia/NV-Embed-v2"
|
| 69 |
+
embeddings = HuggingFaceInstructEmbeddings(model_name=embed_model)
|
| 70 |
+
# embeddings = MistralAIEmbeddings()
|
| 71 |
+
|
| 72 |
+
# RAG chain
|
| 73 |
+
rag_chain = RAG(llm, docs, embeddings)
|
| 74 |
+
|
| 75 |
+
def handle_prompt(message, history):
|
| 76 |
+
try:
|
| 77 |
+
# Stream output
|
| 78 |
+
out=""
|
| 79 |
+
for chunk in rag_chain.stream(message):
|
| 80 |
+
out += chunk
|
| 81 |
+
yield out
|
| 82 |
+
except:
|
| 83 |
+
raise gr.Error("Requests rate limit exceeded")
|
| 84 |
+
|
| 85 |
+
greetingsmessage = "Hi, I'm ChangBot, a chat bot here to assist you with any question related to Chang's research"
|
| 86 |
+
example_questions = [
|
| 87 |
+
"What is the DESI BGS?",
|
| 88 |
+
"What is Quijote?",
|
| 89 |
+
"What is a galaxy bispectrum?",
|
| 90 |
+
"Tell me more about SimBIG"
|
| 91 |
+
]
|
| 92 |
+
|
| 93 |
+
demo = gr.ChatInterface(handle_prompt, type="messages", title="ChangBot", examples=example_questions, theme=gr.themes.Soft(), description=greetingsmessage)#, chatbot=chatbot)
|
| 94 |
+
|
| 95 |
+
demo.launch()
|