Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,9 +8,11 @@ import time
|
|
| 8 |
import numpy as np
|
| 9 |
|
| 10 |
# --- Configuration ---
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
| 14 |
|
| 15 |
# --- DETAILED PROMPT TEMPLATE ---
|
| 16 |
DETAILED_ANALYSIS_PROMPT = """
|
|
@@ -52,33 +54,41 @@ Describe the content of the sidebar, including any navigation, filters, or adver
|
|
| 52 |
- **Layout:** Describe the overall structure (e.g., single-column, grid-based, etc.).
|
| 53 |
"""
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
|
| 73 |
# --- Playwright Screenshot Function ---
|
| 74 |
def take_screenshot(url, max_dimension=1024, full_page_capture=True):
|
| 75 |
-
"""
|
| 76 |
-
Takes a screenshot of a webpage.
|
| 77 |
-
- If full_page_capture is True, captures the full scrollable page and resizes
|
| 78 |
-
based on the max_dimension applied to the width.
|
| 79 |
-
- If False, it captures the visible viewport and resizes based on the
|
| 80 |
-
largest dimension.
|
| 81 |
-
"""
|
| 82 |
if not url.startswith('http://') and not url.startswith('https://'):
|
| 83 |
url = 'http://' + url
|
| 84 |
try:
|
|
@@ -89,200 +99,116 @@ def take_screenshot(url, max_dimension=1024, full_page_capture=True):
|
|
| 89 |
screenshot_path = f"screenshot_{int(time.time())}.png"
|
| 90 |
page.screenshot(path=screenshot_path, full_page=full_page_capture)
|
| 91 |
browser.close()
|
| 92 |
-
|
| 93 |
-
# --- Resize the Screenshot ---
|
| 94 |
with Image.open(screenshot_path) as img:
|
| 95 |
width, height = img.size
|
| 96 |
-
if full_page_capture:
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
new_width = max_dimension
|
| 100 |
new_height = int(height * (max_dimension / width))
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
if width > height:
|
| 107 |
-
new_width = max_dimension
|
| 108 |
-
new_height = int(height * (max_dimension / width))
|
| 109 |
-
else:
|
| 110 |
-
new_height = max_dimension
|
| 111 |
-
new_width = int(width * (max_dimension / height))
|
| 112 |
-
img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
| 113 |
-
img.save(screenshot_path)
|
| 114 |
-
|
| 115 |
return screenshot_path
|
| 116 |
except Exception as e:
|
| 117 |
return f"Error taking screenshot: {str(e)}"
|
| 118 |
|
| 119 |
# --- Inference Function ---
|
| 120 |
-
def process_and_generate(image_input, text_prompt, processing_size=512):
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
Resizes the input image to the specified processing size.
|
| 124 |
-
"""
|
| 125 |
if image_input is None or not text_prompt.strip():
|
| 126 |
return "Please provide both an image and a text prompt."
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
-
pil_image = Image.fromarray(image_input)
|
| 129 |
-
|
| 130 |
-
# --- Resize for Processing ---
|
| 131 |
-
pil_image = pil_image.resize((processing_size, processing_size), Image.Resampling.LANCZOS)
|
| 132 |
-
|
| 133 |
-
messages = [
|
| 134 |
-
{
|
| 135 |
-
"role": "user",
|
| 136 |
-
"content": [
|
| 137 |
-
{"type": "image", "image": pil_image},
|
| 138 |
-
{"type": "text", "text": text_prompt},
|
| 139 |
-
],
|
| 140 |
-
}
|
| 141 |
-
]
|
| 142 |
-
|
| 143 |
-
print("Processing inputs and generating response...")
|
| 144 |
try:
|
| 145 |
-
inputs = processor.apply_chat_template(
|
| 146 |
-
messages,
|
| 147 |
-
tokenize=True,
|
| 148 |
-
add_generation_prompt=True,
|
| 149 |
-
return_dict=True,
|
| 150 |
-
return_tensors="pt"
|
| 151 |
-
)
|
| 152 |
-
inputs = inputs.to(model.device)
|
| 153 |
-
|
| 154 |
if model.config.pad_token_id is None:
|
| 155 |
model.config.pad_token_id = model.config.eos_token_id
|
| 156 |
-
|
| 157 |
generated_ids = model.generate(**inputs, max_new_tokens=2048, do_sample=True, top_p=0.8, temperature=0.7)
|
| 158 |
-
|
| 159 |
-
generated_ids_trimmed =
|
| 160 |
-
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 161 |
-
]
|
| 162 |
-
|
| 163 |
-
output_text = processor.batch_decode(
|
| 164 |
-
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 165 |
-
)
|
| 166 |
-
|
| 167 |
return output_text[0]
|
| 168 |
-
|
| 169 |
except Exception as e:
|
| 170 |
-
import traceback
|
| 171 |
-
traceback.print_exc()
|
| 172 |
return f"An error occurred during generation: {str(e)}"
|
| 173 |
|
| 174 |
# --- Gradio Interface ---
|
| 175 |
with gr.Blocks() as demo:
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
Enter a URL to take a screenshot, then provide a prompt to generate a markdown document from the image.
|
| 180 |
-
**Warning:** Running this on a free CPU Space can be slow. Use the controls below to manage performance.
|
| 181 |
-
"""
|
| 182 |
-
)
|
| 183 |
|
|
|
|
|
|
|
| 184 |
with gr.Accordion("Controls", open=True):
|
| 185 |
with gr.Row():
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
)
|
| 196 |
-
max_dim_slider = gr.Slider(
|
| 197 |
-
minimum=512,
|
| 198 |
-
maximum=2048,
|
| 199 |
-
value=1024,
|
| 200 |
-
step=128,
|
| 201 |
-
label="Max Screenshot Dimension (Width)",
|
| 202 |
-
info="The maximum width of the captured screenshot. Larger values capture more detail but are slower."
|
| 203 |
-
)
|
| 204 |
-
processing_size_slider = gr.Slider(
|
| 205 |
-
minimum=256,
|
| 206 |
-
maximum=1024,
|
| 207 |
-
value=512,
|
| 208 |
-
step=64,
|
| 209 |
-
label="Processing Image Size",
|
| 210 |
-
info="The size the image is resized to before being fed to the model. Smaller values are much faster on CPU."
|
| 211 |
-
)
|
| 212 |
|
| 213 |
with gr.Row():
|
| 214 |
url_input = gr.Textbox(label="Website URL", placeholder="e.g., www.google.com")
|
| 215 |
screenshot_button = gr.Button("Capture Screenshot")
|
| 216 |
|
| 217 |
with gr.Row():
|
|
|
|
| 218 |
with gr.Column(scale=1):
|
| 219 |
-
|
| 220 |
-
with gr.Column(scale=1):
|
| 221 |
-
text_prompt = gr.Textbox(label="Custom Prompt", placeholder="e.g., Describe this webpage in detail as a markdown document.", value="Describe this page's color scheme.")
|
| 222 |
submit_button = gr.Button("Generate Markdown")
|
| 223 |
|
| 224 |
-
|
| 225 |
-
# --- CHANGED: Switched from gr.Markdown to gr.Textbox for copyable output ---
|
| 226 |
-
output_text = gr.Textbox(
|
| 227 |
-
label="Model Output",
|
| 228 |
-
lines=20,
|
| 229 |
-
interactive=False,
|
| 230 |
-
placeholder="Generated markdown will appear here..."
|
| 231 |
-
)
|
| 232 |
-
|
| 233 |
|
|
|
|
| 234 |
def update_image(url, max_dimension, full_page_capture):
|
| 235 |
-
|
| 236 |
-
if
|
| 237 |
-
|
| 238 |
-
else:
|
| 239 |
-
raise gr.Error(screenshot_path)
|
| 240 |
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
# Return a dictionary of updates to show the loading state
|
| 244 |
-
yield {
|
| 245 |
-
# --- CHANGED: Updated loading message for Textbox ---
|
| 246 |
-
output_text: "Processing, please wait... ⏳",
|
| 247 |
-
submit_button: gr.update(interactive=False)
|
| 248 |
-
}
|
| 249 |
-
|
| 250 |
-
# Determine which prompt to use
|
| 251 |
final_prompt = DETAILED_ANALYSIS_PROMPT if use_template else user_prompt
|
|
|
|
|
|
|
| 252 |
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
submit_button: gr.update(interactive=True)
|
| 260 |
-
}
|
| 261 |
-
|
| 262 |
-
|
| 263 |
screenshot_button.click(
|
| 264 |
fn=update_image,
|
| 265 |
inputs=[url_input, max_dim_slider, full_page_checkbox],
|
| 266 |
outputs=image_output
|
| 267 |
)
|
| 268 |
-
|
| 269 |
submit_button.click(
|
| 270 |
fn=generate_markdown_with_loading,
|
| 271 |
-
inputs=[image_output, text_prompt, processing_size_slider, use_template_checkbox],
|
| 272 |
outputs=[output_text, submit_button]
|
| 273 |
)
|
| 274 |
|
| 275 |
-
|
| 276 |
if __name__ == "__main__":
|
| 277 |
-
# Install playwright browsers
|
| 278 |
import subprocess
|
| 279 |
try:
|
| 280 |
print("Installing Playwright browsers...")
|
| 281 |
subprocess.run(["playwright", "install"], check=True)
|
| 282 |
-
# For Debian/Ubuntu based systems, install dependencies
|
| 283 |
subprocess.run(["playwright", "install-deps"], check=True)
|
| 284 |
print("Playwright installation complete.")
|
| 285 |
except Exception as e:
|
| 286 |
print(f"Could not install playwright dependencies: {e}")
|
| 287 |
-
|
| 288 |
demo.launch()
|
|
|
|
| 8 |
import numpy as np
|
| 9 |
|
| 10 |
# --- Configuration ---
|
| 11 |
+
# Define the model options
|
| 12 |
+
MODEL_OPTIONS = {
|
| 13 |
+
"Standard (BF16)": "Qwen/Qwen3-VL-2B-Instruct",
|
| 14 |
+
"Quantized (FP8) - Faster": "Qwen/Qwen3-VL-2B-Instruct-FP8",
|
| 15 |
+
}
|
| 16 |
|
| 17 |
# --- DETAILED PROMPT TEMPLATE ---
|
| 18 |
DETAILED_ANALYSIS_PROMPT = """
|
|
|
|
| 54 |
- **Layout:** Describe the overall structure (e.g., single-column, grid-based, etc.).
|
| 55 |
"""
|
| 56 |
|
| 57 |
+
# --- Model Loading Function ---
|
| 58 |
+
def load_model(model_name):
|
| 59 |
+
"""Loads the specified model and processor from Hugging Face."""
|
| 60 |
+
model_id = MODEL_OPTIONS[model_name]
|
| 61 |
+
yield f"Status: Loading {model_name} model ({model_id})... Please wait.", gr.update(interactive=False)
|
| 62 |
+
|
| 63 |
+
try:
|
| 64 |
+
# Specific loading instructions for the FP8 model
|
| 65 |
+
if "FP8" in model_id:
|
| 66 |
+
model = Qwen3VLForConditionalGeneration.from_pretrained(
|
| 67 |
+
model_id,
|
| 68 |
+
torch_dtype=torch.float8_e4m3fn,
|
| 69 |
+
device_map="auto",
|
| 70 |
+
trust_remote_code=True
|
| 71 |
+
)
|
| 72 |
+
else: # Standard loading for other models
|
| 73 |
+
model = Qwen3VLForConditionalGeneration.from_pretrained(
|
| 74 |
+
model_id,
|
| 75 |
+
device_map="auto",
|
| 76 |
+
trust_remote_code=True
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
| 80 |
+
|
| 81 |
+
yield f"Status: {model_name} model loaded successfully.", gr.update(interactive=True)
|
| 82 |
+
|
| 83 |
+
except Exception as e:
|
| 84 |
+
yield f"Status: Error loading model: {e}", gr.update(interactive=True)
|
| 85 |
+
model, processor = None, None
|
| 86 |
+
|
| 87 |
+
return model, processor
|
| 88 |
|
| 89 |
|
| 90 |
# --- Playwright Screenshot Function ---
|
| 91 |
def take_screenshot(url, max_dimension=1024, full_page_capture=True):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
if not url.startswith('http://') and not url.startswith('https://'):
|
| 93 |
url = 'http://' + url
|
| 94 |
try:
|
|
|
|
| 99 |
screenshot_path = f"screenshot_{int(time.time())}.png"
|
| 100 |
page.screenshot(path=screenshot_path, full_page=full_page_capture)
|
| 101 |
browser.close()
|
|
|
|
|
|
|
| 102 |
with Image.open(screenshot_path) as img:
|
| 103 |
width, height = img.size
|
| 104 |
+
if full_page_capture and width > max_dimension:
|
| 105 |
+
new_width = max_dimension
|
| 106 |
+
new_height = int(height * (max_dimension / width))
|
| 107 |
+
img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
| 108 |
+
img.save(screenshot_path)
|
| 109 |
+
elif not full_page_capture and max(width, height) > max_dimension:
|
| 110 |
+
if width > height:
|
| 111 |
new_width = max_dimension
|
| 112 |
new_height = int(height * (max_dimension / width))
|
| 113 |
+
else:
|
| 114 |
+
new_height = max_dimension
|
| 115 |
+
new_width = int(width * (max_dimension / height))
|
| 116 |
+
img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
| 117 |
+
img.save(screenshot_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
return screenshot_path
|
| 119 |
except Exception as e:
|
| 120 |
return f"Error taking screenshot: {str(e)}"
|
| 121 |
|
| 122 |
# --- Inference Function ---
|
| 123 |
+
def process_and_generate(model, processor, image_input, text_prompt, processing_size=512):
|
| 124 |
+
if model is None or processor is None:
|
| 125 |
+
return "Error: Model is not loaded. Please select a model and click 'Load Model'."
|
|
|
|
|
|
|
| 126 |
if image_input is None or not text_prompt.strip():
|
| 127 |
return "Please provide both an image and a text prompt."
|
| 128 |
+
|
| 129 |
+
pil_image = Image.fromarray(image_input).resize((processing_size, processing_size), Image.Resampling.LANCZOS)
|
| 130 |
+
messages = [{"role": "user", "content": [{"type": "image", "image": pil_image}, {"type": "text", "text": text_prompt}]}]
|
| 131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
try:
|
| 133 |
+
inputs = processor.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_dict=True, return_tensors="pt").to(model.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
if model.config.pad_token_id is None:
|
| 135 |
model.config.pad_token_id = model.config.eos_token_id
|
|
|
|
| 136 |
generated_ids = model.generate(**inputs, max_new_tokens=2048, do_sample=True, top_p=0.8, temperature=0.7)
|
| 137 |
+
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
| 138 |
+
output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
return output_text[0]
|
|
|
|
| 140 |
except Exception as e:
|
|
|
|
|
|
|
| 141 |
return f"An error occurred during generation: {str(e)}"
|
| 142 |
|
| 143 |
# --- Gradio Interface ---
|
| 144 |
with gr.Blocks() as demo:
|
| 145 |
+
# State components to hold the loaded model and processor
|
| 146 |
+
model_state = gr.State(None)
|
| 147 |
+
processor_state = gr.State(None)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
+
gr.Markdown("# Screenshot to Markdown with Qwen3-VL (CPU Optimized)")
|
| 150 |
+
|
| 151 |
with gr.Accordion("Controls", open=True):
|
| 152 |
with gr.Row():
|
| 153 |
+
model_selector = gr.Radio(choices=list(MODEL_OPTIONS.keys()), value="Quantized (FP8) - Faster", label="Select Model")
|
| 154 |
+
load_model_button = gr.Button("Load/Switch Model")
|
| 155 |
+
status_text = gr.Textbox(label="Status", value="Status: No model loaded.", interactive=False)
|
| 156 |
+
|
| 157 |
+
with gr.Row():
|
| 158 |
+
use_template_checkbox = gr.Checkbox(value=True, label="Use Detailed Analysis Template")
|
| 159 |
+
full_page_checkbox = gr.Checkbox(value=True, label="Enable Full Height Page Capture")
|
| 160 |
+
max_dim_slider = gr.Slider(512, 2048, 1024, step=128, label="Max Screenshot Dimension (Width)")
|
| 161 |
+
processing_size_slider = gr.Slider(256, 1024, 512, step=64, label="Processing Image Size")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
with gr.Row():
|
| 164 |
url_input = gr.Textbox(label="Website URL", placeholder="e.g., www.google.com")
|
| 165 |
screenshot_button = gr.Button("Capture Screenshot")
|
| 166 |
|
| 167 |
with gr.Row():
|
| 168 |
+
image_output = gr.Image(type="numpy", label="Screenshot", scale=1)
|
| 169 |
with gr.Column(scale=1):
|
| 170 |
+
text_prompt = gr.Textbox(label="Custom Prompt", value="Describe this page's color scheme.")
|
|
|
|
|
|
|
| 171 |
submit_button = gr.Button("Generate Markdown")
|
| 172 |
|
| 173 |
+
output_text = gr.Textbox(label="Model Output", lines=20, interactive=False, placeholder="Generated markdown will appear here...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
+
# --- UI Event Handlers ---
|
| 176 |
def update_image(url, max_dimension, full_page_capture):
|
| 177 |
+
path = take_screenshot(url, max_dimension, full_page_capture)
|
| 178 |
+
if "Error" in path: raise gr.Error(path)
|
| 179 |
+
return path
|
|
|
|
|
|
|
| 180 |
|
| 181 |
+
def generate_markdown_with_loading(model, processor, image, user_prompt, processing_size, use_template):
|
| 182 |
+
yield "Processing, please wait... ⏳", gr.update(interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
final_prompt = DETAILED_ANALYSIS_PROMPT if use_template else user_prompt
|
| 184 |
+
result = process_and_generate(model, processor, image, final_prompt, processing_size)
|
| 185 |
+
yield result, gr.update(interactive=True)
|
| 186 |
|
| 187 |
+
load_model_button.click(
|
| 188 |
+
fn=load_model,
|
| 189 |
+
inputs=[model_selector],
|
| 190 |
+
outputs=[status_text, load_model_button, model_state, processor_state]
|
| 191 |
+
)
|
| 192 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
screenshot_button.click(
|
| 194 |
fn=update_image,
|
| 195 |
inputs=[url_input, max_dim_slider, full_page_checkbox],
|
| 196 |
outputs=image_output
|
| 197 |
)
|
| 198 |
+
|
| 199 |
submit_button.click(
|
| 200 |
fn=generate_markdown_with_loading,
|
| 201 |
+
inputs=[model_state, processor_state, image_output, text_prompt, processing_size_slider, use_template_checkbox],
|
| 202 |
outputs=[output_text, submit_button]
|
| 203 |
)
|
| 204 |
|
|
|
|
| 205 |
if __name__ == "__main__":
|
|
|
|
| 206 |
import subprocess
|
| 207 |
try:
|
| 208 |
print("Installing Playwright browsers...")
|
| 209 |
subprocess.run(["playwright", "install"], check=True)
|
|
|
|
| 210 |
subprocess.run(["playwright", "install-deps"], check=True)
|
| 211 |
print("Playwright installation complete.")
|
| 212 |
except Exception as e:
|
| 213 |
print(f"Could not install playwright dependencies: {e}")
|
|
|
|
| 214 |
demo.launch()
|