Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
from sentence_transformers import SentenceTransformer
|
| 5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 6 |
+
import torch
|
| 7 |
+
import json
|
| 8 |
+
import os
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
from datetime import datetime
|
| 11 |
+
import edge_tts
|
| 12 |
+
import asyncio
|
| 13 |
+
import base64
|
| 14 |
+
from openai import OpenAI
|
| 15 |
+
import anthropic
|
| 16 |
+
import streamlit.components.v1 as components
|
| 17 |
+
|
| 18 |
+
# Page configuration
|
| 19 |
+
st.set_page_config(
|
| 20 |
+
page_title="Video Search with Speech",
|
| 21 |
+
page_icon="π₯",
|
| 22 |
+
layout="wide"
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
# Initialize session state
|
| 26 |
+
if 'messages' not in st.session_state:
|
| 27 |
+
st.session_state['messages'] = []
|
| 28 |
+
if 'search_history' not in st.session_state:
|
| 29 |
+
st.session_state['search_history'] = []
|
| 30 |
+
if 'last_voice_input' not in st.session_state:
|
| 31 |
+
st.session_state['last_voice_input'] = ""
|
| 32 |
+
|
| 33 |
+
# Load environment variables
|
| 34 |
+
openai_client = OpenAI()
|
| 35 |
+
claude_client = anthropic.Anthropic()
|
| 36 |
+
|
| 37 |
+
# Initialize the speech component
|
| 38 |
+
speech_component = components.declare_component("speech_recognition", path="mycomponent")
|
| 39 |
+
|
| 40 |
+
class VideoSearch:
|
| 41 |
+
def __init__(self):
|
| 42 |
+
self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 43 |
+
self.load_dataset()
|
| 44 |
+
|
| 45 |
+
def load_dataset(self):
|
| 46 |
+
"""Load the Omega Multimodal dataset"""
|
| 47 |
+
try:
|
| 48 |
+
# Load dataset from Hugging Face
|
| 49 |
+
self.dataset = pd.read_csv("paste.txt")
|
| 50 |
+
self.prepare_features()
|
| 51 |
+
except Exception as e:
|
| 52 |
+
st.error(f"Error loading dataset: {e}")
|
| 53 |
+
self.create_dummy_data()
|
| 54 |
+
|
| 55 |
+
def prepare_features(self):
|
| 56 |
+
"""Prepare and cache embeddings"""
|
| 57 |
+
# Convert string representations of embeddings back to numpy arrays
|
| 58 |
+
self.video_embeds = np.array([json.loads(e) if isinstance(e, str) else e
|
| 59 |
+
for e in self.dataset.video_embed])
|
| 60 |
+
self.text_embeds = np.array([json.loads(e) if isinstance(e, str) else e
|
| 61 |
+
for e in self.dataset.description_embed])
|
| 62 |
+
|
| 63 |
+
def create_dummy_data(self):
|
| 64 |
+
"""Create dummy data for testing"""
|
| 65 |
+
self.dataset = pd.DataFrame({
|
| 66 |
+
'video_id': [f'video_{i}' for i in range(10)],
|
| 67 |
+
'youtube_id': ['dQw4w9WgXcQ'] * 10, # Example YouTube ID
|
| 68 |
+
'description': ['Sample video description'] * 10,
|
| 69 |
+
'views': [1000] * 10,
|
| 70 |
+
'start_time': [0] * 10,
|
| 71 |
+
'end_time': [60] * 10
|
| 72 |
+
})
|
| 73 |
+
# Create dummy embeddings
|
| 74 |
+
self.video_embeds = np.random.randn(10, 384) # Match model dimensions
|
| 75 |
+
self.text_embeds = np.random.randn(10, 384)
|
| 76 |
+
|
| 77 |
+
def search(self, query, top_k=5):
|
| 78 |
+
"""Search videos using query"""
|
| 79 |
+
query_embedding = self.text_model.encode([query])[0]
|
| 80 |
+
|
| 81 |
+
# Compute similarities
|
| 82 |
+
video_sims = cosine_similarity([query_embedding], self.video_embeds)[0]
|
| 83 |
+
text_sims = cosine_similarity([query_embedding], self.text_embeds)[0]
|
| 84 |
+
|
| 85 |
+
# Combine similarities
|
| 86 |
+
combined_sims = 0.5 * video_sims + 0.5 * text_sims
|
| 87 |
+
|
| 88 |
+
# Get top results
|
| 89 |
+
top_indices = np.argsort(combined_sims)[-top_k:][::-1]
|
| 90 |
+
|
| 91 |
+
results = []
|
| 92 |
+
for idx in top_indices:
|
| 93 |
+
results.append({
|
| 94 |
+
'video_id': self.dataset.iloc[idx]['video_id'],
|
| 95 |
+
'youtube_id': self.dataset.iloc[idx]['youtube_id'],
|
| 96 |
+
'description': self.dataset.iloc[idx]['description'],
|
| 97 |
+
'start_time': self.dataset.iloc[idx]['start_time'],
|
| 98 |
+
'end_time': self.dataset.iloc[idx]['end_time'],
|
| 99 |
+
'relevance_score': float(combined_sims[idx]),
|
| 100 |
+
'views': self.dataset.iloc[idx]['views']
|
| 101 |
+
})
|
| 102 |
+
|
| 103 |
+
return results
|
| 104 |
+
|
| 105 |
+
async def generate_speech(text, voice="en-US-AriaNeural"):
|
| 106 |
+
"""Generate speech using Edge TTS"""
|
| 107 |
+
if not text.strip():
|
| 108 |
+
return None
|
| 109 |
+
|
| 110 |
+
communicate = edge_tts.Communicate(text, voice)
|
| 111 |
+
audio_file = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
|
| 112 |
+
await communicate.save(audio_file)
|
| 113 |
+
return audio_file
|
| 114 |
+
|
| 115 |
+
def process_with_gpt4(prompt):
|
| 116 |
+
"""Process text with GPT-4"""
|
| 117 |
+
try:
|
| 118 |
+
response = openai_client.chat.completions.create(
|
| 119 |
+
model="gpt-4",
|
| 120 |
+
messages=[{"role": "user", "content": prompt}]
|
| 121 |
+
)
|
| 122 |
+
return response.choices[0].message.content
|
| 123 |
+
except Exception as e:
|
| 124 |
+
st.error(f"Error with GPT-4: {e}")
|
| 125 |
+
return None
|
| 126 |
+
|
| 127 |
+
def process_with_claude(prompt):
|
| 128 |
+
"""Process text with Claude"""
|
| 129 |
+
try:
|
| 130 |
+
response = claude_client.messages.create(
|
| 131 |
+
model="claude-3-sonnet-20240229",
|
| 132 |
+
max_tokens=1000,
|
| 133 |
+
messages=[{"role": "user", "content": prompt}]
|
| 134 |
+
)
|
| 135 |
+
return response.content[0].text
|
| 136 |
+
except Exception as e:
|
| 137 |
+
st.error(f"Error with Claude: {e}")
|
| 138 |
+
return None
|
| 139 |
+
|
| 140 |
+
def main():
|
| 141 |
+
st.title("π₯ Video Search with Speech Recognition")
|
| 142 |
+
|
| 143 |
+
# Initialize video search
|
| 144 |
+
search = VideoSearch()
|
| 145 |
+
|
| 146 |
+
# Create tabs
|
| 147 |
+
tab1, tab2, tab3 = st.tabs(["π Search", "ποΈ Voice Input", "πΎ History"])
|
| 148 |
+
|
| 149 |
+
with tab1:
|
| 150 |
+
st.subheader("Search Videos")
|
| 151 |
+
|
| 152 |
+
# Text search
|
| 153 |
+
query = st.text_input("Enter your search query:")
|
| 154 |
+
col1, col2 = st.columns(2)
|
| 155 |
+
|
| 156 |
+
with col1:
|
| 157 |
+
search_button = st.button("π Search")
|
| 158 |
+
with col2:
|
| 159 |
+
num_results = st.slider("Number of results:", 1, 10, 5)
|
| 160 |
+
|
| 161 |
+
if search_button and query:
|
| 162 |
+
results = search.search(query, num_results)
|
| 163 |
+
st.session_state['search_history'].append({
|
| 164 |
+
'query': query,
|
| 165 |
+
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 166 |
+
'results': results
|
| 167 |
+
})
|
| 168 |
+
|
| 169 |
+
for i, result in enumerate(results, 1):
|
| 170 |
+
with st.expander(f"Result {i}: {result['description'][:100]}...", expanded=i==1):
|
| 171 |
+
cols = st.columns([2, 1])
|
| 172 |
+
|
| 173 |
+
with cols[0]:
|
| 174 |
+
st.markdown(f"**Full Description:**")
|
| 175 |
+
st.write(result['description'])
|
| 176 |
+
st.markdown(f"**Time Range:** {result['start_time']}s - {result['end_time']}s")
|
| 177 |
+
st.markdown(f"**Views:** {result['views']:,}")
|
| 178 |
+
|
| 179 |
+
with cols[1]:
|
| 180 |
+
st.markdown(f"**Relevance Score:** {result['relevance_score']:.2%}")
|
| 181 |
+
if result['youtube_id']:
|
| 182 |
+
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")
|
| 183 |
+
|
| 184 |
+
# Generate audio summary
|
| 185 |
+
if st.button(f"π Generate Audio Summary", key=f"audio_{i}"):
|
| 186 |
+
summary = f"Video summary: {result['description'][:200]}"
|
| 187 |
+
audio_file = asyncio.run(generate_speech(summary))
|
| 188 |
+
if audio_file:
|
| 189 |
+
st.audio(audio_file)
|
| 190 |
+
# Cleanup audio file
|
| 191 |
+
if os.path.exists(audio_file):
|
| 192 |
+
os.remove(audio_file)
|
| 193 |
+
|
| 194 |
+
with tab2:
|
| 195 |
+
st.subheader("Voice Input")
|
| 196 |
+
|
| 197 |
+
# Speech recognition component
|
| 198 |
+
voice_input = speech_component()
|
| 199 |
+
|
| 200 |
+
if voice_input and voice_input != st.session_state['last_voice_input']:
|
| 201 |
+
st.session_state['last_voice_input'] = voice_input
|
| 202 |
+
st.markdown("**Transcribed Text:**")
|
| 203 |
+
st.write(voice_input)
|
| 204 |
+
|
| 205 |
+
cols = st.columns(3)
|
| 206 |
+
with cols[0]:
|
| 207 |
+
if st.button("π Search Videos"):
|
| 208 |
+
results = search.search(voice_input, num_results)
|
| 209 |
+
st.session_state['search_history'].append({
|
| 210 |
+
'query': voice_input,
|
| 211 |
+
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 212 |
+
'results': results
|
| 213 |
+
})
|
| 214 |
+
for i, result in enumerate(results, 1):
|
| 215 |
+
with st.expander(f"Result {i}: {result['description'][:100]}...", expanded=i==1):
|
| 216 |
+
st.write(result['description'])
|
| 217 |
+
if result['youtube_id']:
|
| 218 |
+
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")
|
| 219 |
+
|
| 220 |
+
with cols[1]:
|
| 221 |
+
if st.button("π€ Process with GPT-4"):
|
| 222 |
+
gpt_response = process_with_gpt4(voice_input)
|
| 223 |
+
if gpt_response:
|
| 224 |
+
st.markdown("**GPT-4 Response:**")
|
| 225 |
+
st.write(gpt_response)
|
| 226 |
+
|
| 227 |
+
with cols[2]:
|
| 228 |
+
if st.button("π§ Process with Claude"):
|
| 229 |
+
claude_response = process_with_claude(voice_input)
|
| 230 |
+
if claude_response:
|
| 231 |
+
st.markdown("**Claude Response:**")
|
| 232 |
+
st.write(claude_response)
|
| 233 |
+
|
| 234 |
+
with tab3:
|
| 235 |
+
st.subheader("Search History")
|
| 236 |
+
|
| 237 |
+
if st.button("ποΈ Clear History"):
|
| 238 |
+
st.session_state['search_history'] = []
|
| 239 |
+
st.experimental_rerun()
|
| 240 |
+
|
| 241 |
+
for i, entry in enumerate(reversed(st.session_state['search_history'])):
|
| 242 |
+
with st.expander(f"Query: {entry['query']} ({entry['timestamp']})", expanded=False):
|
| 243 |
+
st.markdown(f"**Original Query:** {entry['query']}")
|
| 244 |
+
st.markdown(f"**Time:** {entry['timestamp']}")
|
| 245 |
+
|
| 246 |
+
for j, result in enumerate(entry['results'], 1):
|
| 247 |
+
st.markdown(f"**Result {j}:**")
|
| 248 |
+
st.write(result['description'])
|
| 249 |
+
if result['youtube_id']:
|
| 250 |
+
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")
|
| 251 |
+
|
| 252 |
+
# Sidebar configuration
|
| 253 |
+
with st.sidebar:
|
| 254 |
+
st.subheader("βοΈ Configuration")
|
| 255 |
+
st.markdown("**Video Search Settings**")
|
| 256 |
+
st.slider("Default Results:", 1, 10, 5, key="default_results")
|
| 257 |
+
|
| 258 |
+
st.markdown("**Voice Settings**")
|
| 259 |
+
st.selectbox("TTS Voice:",
|
| 260 |
+
["en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural"],
|
| 261 |
+
key="tts_voice")
|
| 262 |
+
|
| 263 |
+
st.markdown("**Model Settings**")
|
| 264 |
+
st.selectbox("Text Embedding Model:",
|
| 265 |
+
["all-MiniLM-L6-v2", "paraphrase-multilingual-MiniLM-L12-v2"],
|
| 266 |
+
key="embedding_model")
|
| 267 |
+
|
| 268 |
+
if st.button("π₯ Download Search History"):
|
| 269 |
+
# Convert history to JSON
|
| 270 |
+
history_json = json.dumps(st.session_state['search_history'], indent=2)
|
| 271 |
+
b64 = base64.b64encode(history_json.encode()).decode()
|
| 272 |
+
href = f'<a href="data:file/json;base64,{b64}" download="search_history.json">Download JSON</a>'
|
| 273 |
+
st.markdown(href, unsafe_allow_html=True)
|
| 274 |
+
|
| 275 |
+
if __name__ == "__main__":
|
| 276 |
+
main()
|