Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
from sentence_transformers import SentenceTransformer
|
| 5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 6 |
+
import torch
|
| 7 |
+
import json
|
| 8 |
+
import os
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
|
| 11 |
+
class VideoRetrieval:
|
| 12 |
+
def __init__(self):
|
| 13 |
+
self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 14 |
+
self.load_data()
|
| 15 |
+
|
| 16 |
+
def load_data(self):
|
| 17 |
+
# Load pre-computed features
|
| 18 |
+
# In practice, these would be loaded from your actual feature files
|
| 19 |
+
self.features = {
|
| 20 |
+
'visual_features': np.load('path_to_visual_features.npy'),
|
| 21 |
+
'scene_features': np.load('path_to_scene_features.npy'),
|
| 22 |
+
'object_features': np.load('path_to_object_features.npy')
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
# Load clip metadata
|
| 26 |
+
self.clips_df = pd.read_csv('clips_metadata.csv')
|
| 27 |
+
|
| 28 |
+
def encode_query(self, query_text):
|
| 29 |
+
"""Encode the text query into embeddings"""
|
| 30 |
+
return self.text_model.encode(query_text)
|
| 31 |
+
|
| 32 |
+
def compute_similarity(self, query_embedding, feature_type='visual_features'):
|
| 33 |
+
"""Compute similarity between query and video features"""
|
| 34 |
+
similarities = cosine_similarity(
|
| 35 |
+
query_embedding.reshape(1, -1),
|
| 36 |
+
self.features[feature_type]
|
| 37 |
+
)
|
| 38 |
+
return similarities[0]
|
| 39 |
+
|
| 40 |
+
def retrieve_clips(self, query_text, top_k=3):
|
| 41 |
+
"""Retrieve top-k most relevant clips based on query"""
|
| 42 |
+
# Encode query
|
| 43 |
+
query_embedding = self.encode_query(query_text)
|
| 44 |
+
|
| 45 |
+
# Compute similarities for different feature types
|
| 46 |
+
similarities = {}
|
| 47 |
+
weights = {
|
| 48 |
+
'visual_features': 0.4,
|
| 49 |
+
'scene_features': 0.3,
|
| 50 |
+
'object_features': 0.3
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
for feat_type, weight in weights.items():
|
| 54 |
+
similarities[feat_type] = self.compute_similarity(query_embedding, feat_type) * weight
|
| 55 |
+
|
| 56 |
+
# Combine similarities
|
| 57 |
+
combined_similarities = sum(similarities.values())
|
| 58 |
+
|
| 59 |
+
# Get top-k indices
|
| 60 |
+
top_indices = np.argsort(combined_similarities)[-top_k:][::-1]
|
| 61 |
+
|
| 62 |
+
# Return clip information
|
| 63 |
+
results = []
|
| 64 |
+
for idx in top_indices:
|
| 65 |
+
results.append({
|
| 66 |
+
'clip_id': self.clips_df.iloc[idx]['clip_id'],
|
| 67 |
+
'movie_title': self.clips_df.iloc[idx]['movie_title'],
|
| 68 |
+
'description': self.clips_df.iloc[idx]['description'],
|
| 69 |
+
'timestamp': self.clips_df.iloc[idx]['timestamp'],
|
| 70 |
+
'similarity_score': combined_similarities[idx]
|
| 71 |
+
})
|
| 72 |
+
|
| 73 |
+
return results
|
| 74 |
+
|
| 75 |
+
# Streamlit UI
|
| 76 |
+
def main():
|
| 77 |
+
st.title("Movie Scene Retrieval System")
|
| 78 |
+
st.write("""
|
| 79 |
+
Search for movie scenes using natural language descriptions.
|
| 80 |
+
The system will retrieve the most relevant 2-3 minute clips based on your query.
|
| 81 |
+
""")
|
| 82 |
+
|
| 83 |
+
# Initialize retrieval system
|
| 84 |
+
try:
|
| 85 |
+
retrieval_system = st.session_state.retrieval_system
|
| 86 |
+
except AttributeError:
|
| 87 |
+
retrieval_system = VideoRetrieval()
|
| 88 |
+
st.session_state.retrieval_system = retrieval_system
|
| 89 |
+
|
| 90 |
+
# Search interface
|
| 91 |
+
query = st.text_input("Enter your scene description:",
|
| 92 |
+
"A dramatic confrontation between two characters in a dark room")
|
| 93 |
+
|
| 94 |
+
num_results = st.slider("Number of results to show:", min_value=1, max_value=5, value=3)
|
| 95 |
+
|
| 96 |
+
if st.button("Search"):
|
| 97 |
+
with st.spinner("Searching for relevant clips..."):
|
| 98 |
+
results = retrieval_system.retrieve_clips(query, top_k=num_results)
|
| 99 |
+
|
| 100 |
+
for i, result in enumerate(results, 1):
|
| 101 |
+
st.subheader(f"Result {i}: {result['movie_title']}")
|
| 102 |
+
col1, col2 = st.columns([2, 1])
|
| 103 |
+
|
| 104 |
+
with col1:
|
| 105 |
+
st.write("**Scene Description:**")
|
| 106 |
+
st.write(result['description'])
|
| 107 |
+
st.write(f"**Timestamp:** {result['timestamp']}")
|
| 108 |
+
|
| 109 |
+
with col2:
|
| 110 |
+
st.write("**Similarity Score:**")
|
| 111 |
+
st.progress(float(result['similarity_score']))
|
| 112 |
+
|
| 113 |
+
# In practice, you would have a way to play the video clip here
|
| 114 |
+
st.write("---")
|
| 115 |
+
|
| 116 |
+
# Additional features
|
| 117 |
+
with st.sidebar:
|
| 118 |
+
st.header("About")
|
| 119 |
+
st.write("""
|
| 120 |
+
This system uses pre-computed visual features from several expert models to retrieve
|
| 121 |
+
relevant movie clips based on natural language descriptions. Features include:
|
| 122 |
+
|
| 123 |
+
- Visual scene understanding
|
| 124 |
+
- Character interaction analysis
|
| 125 |
+
- Object detection
|
| 126 |
+
- Action recognition
|
| 127 |
+
""")
|
| 128 |
+
|
| 129 |
+
st.header("Feature Weights")
|
| 130 |
+
st.write("Current weights used for similarity computation:")
|
| 131 |
+
st.write("- Visual Features: 40%")
|
| 132 |
+
st.write("- Scene Features: 30%")
|
| 133 |
+
st.write("- Object Features: 30%")
|
| 134 |
+
|
| 135 |
+
if __name__ == "__main__":
|
| 136 |
+
main()
|
| 137 |
+
|
| 138 |
+
# Requirements.txt
|
| 139 |
+
'''
|
| 140 |
+
streamlit==1.22.0
|
| 141 |
+
pandas==1.5.3
|
| 142 |
+
numpy==1.23.5
|
| 143 |
+
sentence-transformers==2.2.2
|
| 144 |
+
scikit-learn==1.2.2
|
| 145 |
+
torch==2.0.0
|
| 146 |
+
|
| 147 |
+
streamlit
|
| 148 |
+
pandas
|
| 149 |
+
numpy
|
| 150 |
+
sentence-transformers
|
| 151 |
+
scikit-learn
|
| 152 |
+
torch
|
| 153 |
+
|
| 154 |
+
'''
|