Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def fetch_dataset_info_auth(dataset_id, hf_token):
|
| 2 |
+
"""Fetch dataset information with authentication"""
|
| 3 |
+
info_url = f"https://huggingface.co/api/datasets/{dataset_id}"
|
| 4 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
| 5 |
+
try:
|
| 6 |
+
response = requests.get(info_url, headers=headers, timeout=30)
|
| 7 |
+
if response.status_code == 200:
|
| 8 |
+
return response.json()
|
| 9 |
+
except Exception as e:
|
| 10 |
+
st.warning(f"Error fetching dataset info: {e}")
|
| 11 |
+
return None
|
| 12 |
+
|
| 13 |
+
def fetch_dataset_splits_auth(dataset_id, hf_token):
|
| 14 |
+
"""Fetch available splits for the dataset"""
|
| 15 |
+
splits_url = f"https://datasets-server.huggingface.co/splits?dataset={dataset_id}"
|
| 16 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
| 17 |
+
try:
|
| 18 |
+
response = requests.get(splits_url, headers=headers, timeout=30)
|
| 19 |
+
if response.status_code == 200:
|
| 20 |
+
return response.json().get('splits', [])
|
| 21 |
+
except Exception as e:
|
| 22 |
+
st.warning(f"Error fetching splits: {e}")
|
| 23 |
+
return []
|
| 24 |
+
|
| 25 |
+
def fetch_parquet_urls_auth(dataset_id, config, split, hf_token):
|
| 26 |
+
"""Fetch Parquet file URLs for a specific split"""
|
| 27 |
+
parquet_url = f"https://huggingface.co/api/datasets/{dataset_id}/parquet/{config}/{split}"
|
| 28 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
| 29 |
+
try:
|
| 30 |
+
response = requests.get(parquet_url, headers=headers, timeout=30)
|
| 31 |
+
if response.status_code == 200:
|
| 32 |
+
return response.json()
|
| 33 |
+
except Exception as e:
|
| 34 |
+
st.warning(f"Error fetching parquet URLs: {e}")
|
| 35 |
+
return []
|
| 36 |
+
|
| 37 |
+
def fetch_rows_auth(dataset_id, config, split, offset, length, hf_token):
|
| 38 |
+
"""Fetch rows with authentication"""
|
| 39 |
+
url = f"https://datasets-server.huggingface.co/rows?dataset={dataset_id}&config={config}&split={split}&offset={offset}&length={length}"
|
| 40 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
| 41 |
+
try:
|
| 42 |
+
response = requests.get(url, headers=headers, timeout=30)
|
| 43 |
+
if response.status_code == 200:
|
| 44 |
+
return response.json()
|
| 45 |
+
except Exception as e:
|
| 46 |
+
st.warning(f"Error fetching rows: {e}")
|
| 47 |
+
return None
|
| 48 |
+
|
| 49 |
+
class ParquetVideoSearch:
|
| 50 |
+
def __init__(self, hf_token):
|
| 51 |
+
self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 52 |
+
self.dataset_id = "tomg-group-umd/cinepile"
|
| 53 |
+
self.config = "v2"
|
| 54 |
+
self.hf_token = hf_token
|
| 55 |
+
self.load_dataset()
|
| 56 |
+
|
| 57 |
+
def load_dataset(self):
|
| 58 |
+
"""Load initial dataset sample"""
|
| 59 |
+
try:
|
| 60 |
+
rows_data = fetch_rows_auth(
|
| 61 |
+
self.dataset_id,
|
| 62 |
+
self.config,
|
| 63 |
+
"train",
|
| 64 |
+
0,
|
| 65 |
+
100,
|
| 66 |
+
self.hf_token
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
if rows_data and 'rows' in rows_data:
|
| 70 |
+
processed_rows = []
|
| 71 |
+
for row_data in rows_data['rows']:
|
| 72 |
+
row = row_data.get('row', row_data)
|
| 73 |
+
processed_rows.append(row)
|
| 74 |
+
|
| 75 |
+
self.dataset = pd.DataFrame(processed_rows)
|
| 76 |
+
st.session_state['search_columns'] = [col for col in self.dataset.columns
|
| 77 |
+
if not any(term in col.lower() for term in ['embed', 'vector', 'encoding'])]
|
| 78 |
+
else:
|
| 79 |
+
self.dataset = self.load_example_data()
|
| 80 |
+
|
| 81 |
+
except Exception as e:
|
| 82 |
+
st.warning(f"Error loading dataset: {e}")
|
| 83 |
+
self.dataset = self.load_example_data()
|
| 84 |
+
|
| 85 |
+
self.prepare_features()
|
| 86 |
+
|
| 87 |
+
def load_example_data(self):
|
| 88 |
+
"""Load example data as fallback"""
|
| 89 |
+
return pd.DataFrame([{
|
| 90 |
+
"video_id": "example",
|
| 91 |
+
"title": "Example Video",
|
| 92 |
+
"description": "Example video content",
|
| 93 |
+
"duration": 120,
|
| 94 |
+
"start_time": 0,
|
| 95 |
+
"end_time": 120
|
| 96 |
+
}])
|
| 97 |
+
|
| 98 |
+
def prepare_features(self):
|
| 99 |
+
"""Prepare text features for search"""
|
| 100 |
+
try:
|
| 101 |
+
# Combine relevant text fields for search
|
| 102 |
+
text_fields = ['title', 'description'] if 'title' in self.dataset.columns else ['description']
|
| 103 |
+
combined_text = self.dataset[text_fields].fillna('').agg(' '.join, axis=1)
|
| 104 |
+
self.text_embeds = self.text_model.encode(combined_text.tolist())
|
| 105 |
+
|
| 106 |
+
except Exception as e:
|
| 107 |
+
st.warning(f"Error preparing features: {e}")
|
| 108 |
+
self.text_embeds = np.random.randn(len(self.dataset), 384)
|
| 109 |
+
|
| 110 |
+
def search(self, query, column=None, top_k=20):
|
| 111 |
+
"""Search using text embeddings and optional column filtering"""
|
| 112 |
+
query_embedding = self.text_model.encode([query])[0]
|
| 113 |
+
similarities = cosine_similarity([query_embedding], self.text_embeds)[0]
|
| 114 |
+
|
| 115 |
+
# Column filtering
|
| 116 |
+
if column and column in self.dataset.columns and column != "All Fields":
|
| 117 |
+
mask = self.dataset[column].astype(str).str.contains(query, case=False)
|
| 118 |
+
similarities[~mask] *= 0.5
|
| 119 |
+
|
| 120 |
+
top_k = min(top_k, len(similarities))
|
| 121 |
+
top_indices = np.argsort(similarities)[-top_k:][::-1]
|
| 122 |
+
|
| 123 |
+
results = []
|
| 124 |
+
for idx in top_indices:
|
| 125 |
+
result = {
|
| 126 |
+
'relevance_score': float(similarities[idx]),
|
| 127 |
+
**self.dataset.iloc[idx].to_dict()
|
| 128 |
+
}
|
| 129 |
+
results.append(result)
|
| 130 |
+
|
| 131 |
+
return results
|
| 132 |
+
|
| 133 |
+
def render_video_result(result):
|
| 134 |
+
"""Render a video result with enhanced display"""
|
| 135 |
+
col1, col2 = st.columns([2, 1])
|
| 136 |
+
|
| 137 |
+
with col1:
|
| 138 |
+
if 'title' in result:
|
| 139 |
+
st.markdown(f"**Title:** {result['title']}")
|
| 140 |
+
st.markdown("**Description:**")
|
| 141 |
+
st.write(result.get('description', 'No description available'))
|
| 142 |
+
|
| 143 |
+
# Show timing information
|
| 144 |
+
start_time = result.get('start_time', 0)
|
| 145 |
+
end_time = result.get('end_time', result.get('duration', 0))
|
| 146 |
+
st.markdown(f"**Time Range:** {start_time}s - {end_time}s")
|
| 147 |
+
|
| 148 |
+
# Show additional metadata
|
| 149 |
+
for key, value in result.items():
|
| 150 |
+
if key not in ['title', 'description', 'start_time', 'end_time', 'duration',
|
| 151 |
+
'relevance_score', 'video_id', '_config', '_split']:
|
| 152 |
+
st.markdown(f"**{key.replace('_', ' ').title()}:** {value}")
|
| 153 |
+
|
| 154 |
+
with col2:
|
| 155 |
+
st.markdown(f"**Relevance Score:** {result['relevance_score']:.2%}")
|
| 156 |
+
|
| 157 |
+
# Display video if URL is available
|
| 158 |
+
video_url = None
|
| 159 |
+
if 'video_url' in result:
|
| 160 |
+
video_url = result['video_url']
|
| 161 |
+
elif 'youtube_id' in result:
|
| 162 |
+
video_url = f"https://youtube.com/watch?v={result['youtube_id']}&t={start_time}"
|
| 163 |
+
|
| 164 |
+
if video_url:
|
| 165 |
+
st.video(video_url)
|
| 166 |
+
if st.button(f"π Audio Summary", key=f"audio_{result.get('video_id', '')}"):
|
| 167 |
+
summary = f"Video summary: {result.get('title', '')}. {result.get('description', '')[:200]}"
|
| 168 |
+
audio_file = asyncio.run(generate_speech(summary))
|
| 169 |
+
if audio_file:
|
| 170 |
+
st.audio(audio_file)
|
| 171 |
+
|
| 172 |
+
def main():
|
| 173 |
+
st.title("π₯ Enhanced Video Search with Parquet Support")
|
| 174 |
+
|
| 175 |
+
# Get HF token from secrets or user input
|
| 176 |
+
if 'hf_token' not in st.session_state:
|
| 177 |
+
st.session_state['hf_token'] = st.secrets.get("HF_TOKEN", None)
|
| 178 |
+
|
| 179 |
+
if not st.session_state['hf_token']:
|
| 180 |
+
hf_token = st.text_input("Enter your Hugging Face API token:", type="password")
|
| 181 |
+
if hf_token:
|
| 182 |
+
st.session_state['hf_token'] = hf_token
|
| 183 |
+
|
| 184 |
+
if not st.session_state.get('hf_token'):
|
| 185 |
+
st.warning("Please provide a Hugging Face API token to access the dataset.")
|
| 186 |
+
return
|
| 187 |
+
|
| 188 |
+
# Initialize search class
|
| 189 |
+
search = ParquetVideoSearch(st.session_state['hf_token'])
|
| 190 |
+
|
| 191 |
+
# Create tabs
|
| 192 |
+
tab1, tab2 = st.tabs(["π Video Search", "π Dataset Info"])
|
| 193 |
+
|
| 194 |
+
# ---- Tab 1: Video Search ----
|
| 195 |
+
with tab1:
|
| 196 |
+
st.subheader("Search Videos")
|
| 197 |
+
col1, col2 = st.columns([3, 1])
|
| 198 |
+
|
| 199 |
+
with col1:
|
| 200 |
+
query = st.text_input("Enter your search query:",
|
| 201 |
+
value="" if st.session_state['initial_search_done'] else "")
|
| 202 |
+
with col2:
|
| 203 |
+
search_column = st.selectbox("Search in field:",
|
| 204 |
+
["All Fields"] + st.session_state['search_columns'])
|
| 205 |
+
|
| 206 |
+
col3, col4 = st.columns(2)
|
| 207 |
+
with col3:
|
| 208 |
+
num_results = st.slider("Number of results:", 1, 100, 20)
|
| 209 |
+
with col4:
|
| 210 |
+
search_button = st.button("π Search")
|
| 211 |
+
|
| 212 |
+
if search_button and query:
|
| 213 |
+
st.session_state['initial_search_done'] = True
|
| 214 |
+
selected_column = None if search_column == "All Fields" else search_column
|
| 215 |
+
|
| 216 |
+
with st.spinner("Searching..."):
|
| 217 |
+
results = search.search(query, selected_column, num_results)
|
| 218 |
+
|
| 219 |
+
st.session_state['search_history'].append({
|
| 220 |
+
'query': query,
|
| 221 |
+
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 222 |
+
'results': results[:5]
|
| 223 |
+
})
|
| 224 |
+
|
| 225 |
+
for i, result in enumerate(results, 1):
|
| 226 |
+
with st.expander(
|
| 227 |
+
f"Result {i}: {result.get('title', result.get('description', 'No title'))[:100]}...",
|
| 228 |
+
expanded=(i==1)
|
| 229 |
+
):
|
| 230 |
+
render_video_result(result)
|
| 231 |
+
|
| 232 |
+
# ---- Tab 2: Dataset Info ----
|
| 233 |
+
with tab2:
|
| 234 |
+
st.subheader("Dataset Information")
|
| 235 |
+
|
| 236 |
+
# Show available splits
|
| 237 |
+
splits = fetch_dataset_splits_auth(search.dataset_id, st.session_state['hf_token'])
|
| 238 |
+
if splits:
|
| 239 |
+
st.write("### Available Splits")
|
| 240 |
+
for split in splits:
|
| 241 |
+
st.write(f"- {split['split']}: {split.get('num_rows', 'unknown')} rows")
|
| 242 |
+
|
| 243 |
+
# Show dataset statistics
|
| 244 |
+
st.write("### Dataset Statistics")
|
| 245 |
+
st.write(f"- Loaded rows: {len(search.dataset)}")
|
| 246 |
+
st.write(f"- Available columns: {', '.join(search.dataset.columns)}")
|
| 247 |
+
|
| 248 |
+
# Show sample data
|
| 249 |
+
st.write("### Sample Data")
|
| 250 |
+
st.dataframe(search.dataset.head())
|
| 251 |
+
|
| 252 |
+
# Sidebar
|
| 253 |
+
with st.sidebar:
|
| 254 |
+
st.subheader("βοΈ Settings & History")
|
| 255 |
+
if st.button("ποΈ Clear History"):
|
| 256 |
+
st.session_state['search_history'] = []
|
| 257 |
+
st.experimental_rerun()
|
| 258 |
+
|
| 259 |
+
st.markdown("### Recent Searches")
|
| 260 |
+
for entry in reversed(st.session_state['search_history'][-5:]):
|
| 261 |
+
with st.expander(f"{entry['timestamp']}: {entry['query']}"):
|
| 262 |
+
for i, result in enumerate(entry['results'], 1):
|
| 263 |
+
st.write(f"{i}. {result.get('title', result.get('description', 'No title'))[:100]}...")
|
| 264 |
+
|
| 265 |
+
if __name__ == "__main__":
|
| 266 |
+
main()
|