Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,6 +7,7 @@ import torch
|
|
| 7 |
import json
|
| 8 |
import os
|
| 9 |
import glob
|
|
|
|
| 10 |
from pathlib import Path
|
| 11 |
from datetime import datetime, timedelta
|
| 12 |
import edge_tts
|
|
@@ -20,37 +21,51 @@ from datasets import load_dataset
|
|
| 20 |
import base64
|
| 21 |
import re
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
'initial_search_done': False, # First search flag
|
| 31 |
-
'tts_voice': "en-US-AriaNeural", # Default voice
|
| 32 |
-
'arxiv_last_query': "", # Last ArXiv search
|
| 33 |
-
'dataset_loaded': False, # Dataset load status
|
| 34 |
-
'current_page': 0, # Current data page
|
| 35 |
-
'data_cache': None, # Data cache
|
| 36 |
-
'dataset_info': None, # Dataset metadata
|
| 37 |
-
'nps_submitted': False, # Track if user submitted NPS
|
| 38 |
-
'nps_last_shown': None, # When NPS was last shown
|
| 39 |
-
'old_val': None, # Previous voice input value
|
| 40 |
-
'voice_text': None # Processed voice text
|
| 41 |
-
}
|
| 42 |
|
| 43 |
-
# Constants
|
| 44 |
ROWS_PER_PAGE = 100
|
| 45 |
MIN_SEARCH_SCORE = 0.3
|
| 46 |
EXACT_MATCH_BOOST = 2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
# Initialize session state
|
| 49 |
for var, default in SESSION_VARS.items():
|
| 50 |
if var not in st.session_state:
|
| 51 |
st.session_state[var] = default
|
| 52 |
|
| 53 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
def create_voice_component():
|
| 55 |
"""Create the voice input component"""
|
| 56 |
mycomponent = components.declare_component(
|
|
@@ -59,9 +74,7 @@ def create_voice_component():
|
|
| 59 |
)
|
| 60 |
return mycomponent
|
| 61 |
|
| 62 |
-
# Utility Functions
|
| 63 |
def clean_for_speech(text: str) -> str:
|
| 64 |
-
"""Clean text for speech synthesis"""
|
| 65 |
text = text.replace("\n", " ")
|
| 66 |
text = text.replace("</s>", " ")
|
| 67 |
text = text.replace("#", "")
|
|
@@ -82,7 +95,6 @@ async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=
|
|
| 82 |
return out_fn
|
| 83 |
|
| 84 |
def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0):
|
| 85 |
-
"""Wrapper for edge TTS generation"""
|
| 86 |
return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch))
|
| 87 |
|
| 88 |
def play_and_download_audio(file_path):
|
|
@@ -94,12 +106,10 @@ def play_and_download_audio(file_path):
|
|
| 94 |
|
| 95 |
@st.cache_resource
|
| 96 |
def get_model():
|
| 97 |
-
"""Get sentence transformer model"""
|
| 98 |
return SentenceTransformer('all-MiniLM-L6-v2')
|
| 99 |
|
| 100 |
@st.cache_data
|
| 101 |
def load_dataset_page(dataset_id, token, page, rows_per_page):
|
| 102 |
-
"""Load dataset page with caching"""
|
| 103 |
try:
|
| 104 |
start_idx = page * rows_per_page
|
| 105 |
end_idx = start_idx + rows_per_page
|
|
@@ -116,7 +126,6 @@ def load_dataset_page(dataset_id, token, page, rows_per_page):
|
|
| 116 |
|
| 117 |
@st.cache_data
|
| 118 |
def get_dataset_info(dataset_id, token):
|
| 119 |
-
"""Get dataset info with caching"""
|
| 120 |
try:
|
| 121 |
dataset = load_dataset(dataset_id, token=token, streaming=True)
|
| 122 |
return dataset['train'].info
|
|
@@ -125,7 +134,6 @@ def get_dataset_info(dataset_id, token):
|
|
| 125 |
return None
|
| 126 |
|
| 127 |
def fetch_dataset_info(dataset_id):
|
| 128 |
-
"""Fetch dataset information"""
|
| 129 |
info_url = f"https://huggingface.co/api/datasets/{dataset_id}"
|
| 130 |
try:
|
| 131 |
response = requests.get(info_url, timeout=30)
|
|
@@ -136,18 +144,30 @@ def fetch_dataset_info(dataset_id):
|
|
| 136 |
return None
|
| 137 |
|
| 138 |
def generate_filename(text):
|
| 139 |
-
"""Generate unique filename from text"""
|
| 140 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 141 |
safe_text = re.sub(r'[^\w\s-]', '', text[:50]).strip().lower()
|
| 142 |
safe_text = re.sub(r'[-\s]+', '-', safe_text)
|
| 143 |
-
return f"{timestamp}_{safe_text}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
def render_result(result):
|
| 146 |
-
"""Render a single search result"""
|
| 147 |
score = result.get('relevance_score', 0)
|
| 148 |
result_filtered = {k: v for k, v in result.items()
|
| 149 |
if k not in ['relevance_score', 'video_embed', 'description_embed', 'audio_embed']}
|
| 150 |
-
|
| 151 |
if 'youtube_id' in result:
|
| 152 |
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result.get('start_time', 0)}")
|
| 153 |
|
|
@@ -183,8 +203,6 @@ def render_result(result):
|
|
| 183 |
play_and_download_audio(audio_file)
|
| 184 |
|
| 185 |
class FastDatasetSearcher:
|
| 186 |
-
"""Fast dataset search with semantic and token matching"""
|
| 187 |
-
|
| 188 |
def __init__(self, dataset_id="tomg-group-umd/cinepile"):
|
| 189 |
self.dataset_id = dataset_id
|
| 190 |
self.text_model = get_model()
|
|
@@ -197,18 +215,16 @@ class FastDatasetSearcher:
|
|
| 197 |
st.session_state['dataset_info'] = get_dataset_info(self.dataset_id, self.token)
|
| 198 |
|
| 199 |
def load_page(self, page=0):
|
| 200 |
-
"""Load a specific page of data"""
|
| 201 |
return load_dataset_page(self.dataset_id, self.token, page, ROWS_PER_PAGE)
|
| 202 |
|
| 203 |
def quick_search(self, query, df):
|
| 204 |
-
"""Perform quick search with semantic similarity"""
|
| 205 |
if df.empty or not query.strip():
|
| 206 |
return df
|
| 207 |
|
| 208 |
try:
|
| 209 |
searchable_cols = []
|
| 210 |
for col in df.columns:
|
| 211 |
-
sample_val = df[col].iloc[0]
|
| 212 |
if not isinstance(sample_val, (np.ndarray, bytes)):
|
| 213 |
searchable_cols.append(col)
|
| 214 |
|
|
@@ -253,7 +269,7 @@ class FastDatasetSearcher:
|
|
| 253 |
if text.strip():
|
| 254 |
text_tokens = set(text.lower().split())
|
| 255 |
matching_terms = query_terms.intersection(text_tokens)
|
| 256 |
-
keyword_score = len(matching_terms) / len(query_terms)
|
| 257 |
|
| 258 |
text_embedding = self.text_model.encode([text], show_progress_bar=False)[0]
|
| 259 |
semantic_score = float(cosine_similarity([query_embedding], [text_embedding])[0][0])
|
|
@@ -286,9 +302,13 @@ class FastDatasetSearcher:
|
|
| 286 |
st.error(f"Search error: {str(e)}")
|
| 287 |
return df
|
| 288 |
|
|
|
|
| 289 |
def main():
|
| 290 |
st.title("🎥 Smart Video & Voice Search")
|
| 291 |
|
|
|
|
|
|
|
|
|
|
| 292 |
# Initialize components
|
| 293 |
voice_component = create_voice_component()
|
| 294 |
search = FastDatasetSearcher()
|
|
@@ -296,176 +316,31 @@ def main():
|
|
| 296 |
# Voice input at top level
|
| 297 |
voice_val = voice_component(my_input_value="Start speaking...")
|
| 298 |
|
| 299 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
if voice_val:
|
| 301 |
voice_text = str(voice_val).strip()
|
| 302 |
edited_input = st.text_area("✏️ Edit Voice Input:", value=voice_text, height=100)
|
| 303 |
|
|
|
|
| 304 |
run_option = st.selectbox("Select Search Type:",
|
| 305 |
-
|
| 306 |
|
| 307 |
col1, col2 = st.columns(2)
|
| 308 |
with col1:
|
| 309 |
-
autorun = st.checkbox("⚡ Auto-Run", value=
|
| 310 |
with col2:
|
| 311 |
full_audio = st.checkbox("🔊 Full Audio", value=False)
|
| 312 |
|
| 313 |
input_changed = (voice_text != st.session_state.get('old_val'))
|
| 314 |
|
| 315 |
if autorun and input_changed:
|
| 316 |
-
|
| 317 |
-
with st.spinner("Processing voice input..."):
|
| 318 |
-
if run_option == "Quick Search":
|
| 319 |
-
results = search.quick_search(edited_input, search.load_page())
|
| 320 |
-
for i, result in enumerate(results.iterrows(), 1):
|
| 321 |
-
with st.expander(f"Result {i}", expanded=(i==1)):
|
| 322 |
-
render_result(result[1])
|
| 323 |
-
|
| 324 |
-
elif run_option == "Deep Search":
|
| 325 |
-
with st.spinner("Performing deep search..."):
|
| 326 |
-
results = []
|
| 327 |
-
for page in range(3): # Search first 3 pages
|
| 328 |
-
df = search.load_page(page)
|
| 329 |
-
results.extend(search.quick_search(edited_input, df).iterrows())
|
| 330 |
-
|
| 331 |
-
for i, result in enumerate(results, 1):
|
| 332 |
-
with st.expander(f"Result {i}", expanded=(i==1)):
|
| 333 |
-
render_result(result[1])
|
| 334 |
-
|
| 335 |
-
elif run_option == "Voice Summary":
|
| 336 |
-
audio_file = speak_with_edge_tts(edited_input)
|
| 337 |
-
if audio_file:
|
| 338 |
-
play_and_download_audio(audio_file)
|
| 339 |
-
|
| 340 |
-
elif st.button("🔍 Search", key="voice_input_search"):
|
| 341 |
-
st.session_state['old_val'] = voice_text
|
| 342 |
-
with st.spinner("Processing..."):
|
| 343 |
-
results = search.quick_search(edited_input, search.load_page())
|
| 344 |
-
for i, result in enumerate(results.iterrows(), 1):
|
| 345 |
-
with st.expander(f"Result {i}", expanded=(i==1)):
|
| 346 |
-
render_result(result[1])
|
| 347 |
-
|
| 348 |
-
# Create main tabs
|
| 349 |
-
tab1, tab2, tab3, tab4 = st.tabs([
|
| 350 |
-
"🔍 Search", "🎙️ Voice", "💾 History", "⚙️ Settings"
|
| 351 |
-
])
|
| 352 |
-
|
| 353 |
-
with tab1:
|
| 354 |
-
st.subheader("🔍 Search")
|
| 355 |
-
col1, col2 = st.columns([3, 1])
|
| 356 |
-
with col1:
|
| 357 |
-
query = st.text_input("Enter search query:",
|
| 358 |
-
value="" if st.session_state['initial_search_done'] else "")
|
| 359 |
-
with col2:
|
| 360 |
-
search_column = st.selectbox("Search in:",
|
| 361 |
-
["All Fields"] + st.session_state['search_columns'])
|
| 362 |
-
|
| 363 |
-
col3, col4 = st.columns(2)
|
| 364 |
-
with col3:
|
| 365 |
-
num_results = st.slider("Max results:", 1, 100, 20)
|
| 366 |
-
with col4:
|
| 367 |
-
search_button = st.button("🔍 Search", key="main_search_button")
|
| 368 |
-
|
| 369 |
-
if (search_button or not st.session_state['initial_search_done']) and query:
|
| 370 |
-
st.session_state['initial_search_done'] = True
|
| 371 |
-
selected_column = None if search_column == "All Fields" else search_column
|
| 372 |
-
|
| 373 |
-
with st.spinner("Searching..."):
|
| 374 |
-
df = search.load_page()
|
| 375 |
-
results = search.quick_search(query, df)
|
| 376 |
-
|
| 377 |
-
if len(results) > 0:
|
| 378 |
-
st.session_state['search_history'].append({
|
| 379 |
-
'query': query,
|
| 380 |
-
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 381 |
-
'results': results[:5]
|
| 382 |
-
})
|
| 383 |
-
|
| 384 |
-
st.write(f"Found {len(results)} results:")
|
| 385 |
-
for i, (_, result) in enumerate(results.iterrows(), 1):
|
| 386 |
-
if i > num_results:
|
| 387 |
-
break
|
| 388 |
-
with st.expander(f"Result {i}", expanded=(i==1)):
|
| 389 |
-
render_result(result)
|
| 390 |
-
else:
|
| 391 |
-
st.warning("No matching results found.")
|
| 392 |
-
|
| 393 |
-
with tab2:
|
| 394 |
-
st.subheader("🎙️ Voice Input")
|
| 395 |
-
st.write("Use the voice input above to start speaking, or record a new message:")
|
| 396 |
-
|
| 397 |
-
col1, col2 = st.columns(2)
|
| 398 |
-
with col1:
|
| 399 |
-
if st.button("🎙️ Start New Recording", key="start_recording_button"):
|
| 400 |
-
st.session_state['recording'] = True
|
| 401 |
-
st.experimental_rerun()
|
| 402 |
-
with col2:
|
| 403 |
-
if st.button("🛑 Stop Recording", key="stop_recording_button"):
|
| 404 |
-
st.session_state['recording'] = False
|
| 405 |
-
st.experimental_rerun()
|
| 406 |
-
|
| 407 |
-
if st.session_state.get('recording', False):
|
| 408 |
-
voice_component = create_voice_component()
|
| 409 |
-
new_val = voice_component(my_input_value="Recording...")
|
| 410 |
-
if new_val:
|
| 411 |
-
st.text_area("Recorded Text:", value=new_val, height=100)
|
| 412 |
-
if st.button("🔍 Search with Recording", key="recording_search_button"):
|
| 413 |
-
with st.spinner("Processing recording..."):
|
| 414 |
-
df = search.load_page()
|
| 415 |
-
results = search.quick_search(new_val, df)
|
| 416 |
-
for i, (_, result) in enumerate(results.iterrows(), 1):
|
| 417 |
-
with st.expander(f"Result {i}", expanded=(i==1)):
|
| 418 |
-
render_result(result)
|
| 419 |
-
|
| 420 |
-
with tab3:
|
| 421 |
-
st.subheader("💾 Search History")
|
| 422 |
-
if not st.session_state['search_history']:
|
| 423 |
-
st.info("No search history yet. Try searching for something!")
|
| 424 |
-
else:
|
| 425 |
-
for entry in reversed(st.session_state['search_history']):
|
| 426 |
-
with st.expander(f"🕒 {entry['timestamp']} - {entry['query']}", expanded=False):
|
| 427 |
-
for i, result in enumerate(entry['results'], 1):
|
| 428 |
-
st.write(f"**Result {i}:**")
|
| 429 |
-
if isinstance(result, pd.Series):
|
| 430 |
-
render_result(result)
|
| 431 |
-
else:
|
| 432 |
-
st.write(result)
|
| 433 |
-
|
| 434 |
-
with tab4:
|
| 435 |
-
st.subheader("⚙️ Settings")
|
| 436 |
-
st.write("Voice Settings:")
|
| 437 |
-
default_voice = st.selectbox(
|
| 438 |
-
"Default Voice:",
|
| 439 |
-
[
|
| 440 |
-
"en-US-AriaNeural",
|
| 441 |
-
"en-US-GuyNeural",
|
| 442 |
-
"en-GB-SoniaNeural",
|
| 443 |
-
"en-GB-TonyNeural"
|
| 444 |
-
],
|
| 445 |
-
index=0,
|
| 446 |
-
key="default_voice_setting"
|
| 447 |
-
)
|
| 448 |
-
|
| 449 |
-
st.write("Search Settings:")
|
| 450 |
-
st.slider("Minimum Search Score:", 0.0, 1.0, MIN_SEARCH_SCORE, 0.1, key="min_search_score")
|
| 451 |
-
st.slider("Exact Match Boost:", 1.0, 3.0, EXACT_MATCH_BOOST, 0.1, key="exact_match_boost")
|
| 452 |
-
|
| 453 |
-
if st.button("🗑️ Clear Search History", key="clear_history_button"):
|
| 454 |
-
st.session_state['search_history'] = []
|
| 455 |
-
st.success("Search history cleared!")
|
| 456 |
-
st.experimental_rerun()
|
| 457 |
-
|
| 458 |
-
# Sidebar with metrics
|
| 459 |
-
with st.sidebar:
|
| 460 |
-
st.subheader("📊 Search Metrics")
|
| 461 |
-
total_searches = len(st.session_state['search_history'])
|
| 462 |
-
st.metric("Total Searches", total_searches)
|
| 463 |
-
|
| 464 |
-
if total_searches > 0:
|
| 465 |
-
recent_searches = st.session_state['search_history'][-5:]
|
| 466 |
-
st.write("Recent Searches:")
|
| 467 |
-
for entry in reversed(recent_searches):
|
| 468 |
-
st.write(f"🔍 {entry['query']}")
|
| 469 |
-
|
| 470 |
-
if __name__ == "__main__":
|
| 471 |
-
main()
|
|
|
|
| 7 |
import json
|
| 8 |
import os
|
| 9 |
import glob
|
| 10 |
+
import random
|
| 11 |
from pathlib import Path
|
| 12 |
from datetime import datetime, timedelta
|
| 13 |
import edge_tts
|
|
|
|
| 21 |
import base64
|
| 22 |
import re
|
| 23 |
|
| 24 |
+
# -------------------- Configuration & Constants --------------------
|
| 25 |
+
# User name assignment
|
| 26 |
+
USER_NAMES = [
|
| 27 |
+
"Alex", "Jordan", "Taylor", "Morgan", "Rowan", "Avery", "Riley", "Quinn",
|
| 28 |
+
"Casey", "Jesse", "Reese", "Skyler", "Ellis", "Devon", "Aubrey", "Kendall",
|
| 29 |
+
"Parker", "Dakota", "Sage", "Finley"
|
| 30 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
|
|
|
| 32 |
ROWS_PER_PAGE = 100
|
| 33 |
MIN_SEARCH_SCORE = 0.3
|
| 34 |
EXACT_MATCH_BOOST = 2.0
|
| 35 |
+
SAVED_INPUTS_DIR = "saved_inputs"
|
| 36 |
+
os.makedirs(SAVED_INPUTS_DIR, exist_ok=True)
|
| 37 |
+
|
| 38 |
+
# -------------------- Session State Initialization --------------------
|
| 39 |
+
SESSION_VARS = {
|
| 40 |
+
'search_history': [],
|
| 41 |
+
'last_voice_input': "",
|
| 42 |
+
'transcript_history': [],
|
| 43 |
+
'should_rerun': False,
|
| 44 |
+
'search_columns': [],
|
| 45 |
+
'initial_search_done': False,
|
| 46 |
+
'tts_voice': "en-US-AriaNeural",
|
| 47 |
+
'arxiv_last_query': "",
|
| 48 |
+
'dataset_loaded': False,
|
| 49 |
+
'current_page': 0,
|
| 50 |
+
'data_cache': None,
|
| 51 |
+
'dataset_info': None,
|
| 52 |
+
'nps_submitted': False,
|
| 53 |
+
'nps_last_shown': None,
|
| 54 |
+
'old_val': None,
|
| 55 |
+
'voice_text': None,
|
| 56 |
+
'user_name': None, # New: Track user name
|
| 57 |
+
'max_items': 100 # Default max items
|
| 58 |
+
}
|
| 59 |
|
|
|
|
| 60 |
for var, default in SESSION_VARS.items():
|
| 61 |
if var not in st.session_state:
|
| 62 |
st.session_state[var] = default
|
| 63 |
|
| 64 |
+
# Assign user name if not assigned
|
| 65 |
+
if st.session_state['user_name'] is None:
|
| 66 |
+
st.session_state['user_name'] = random.choice(USER_NAMES)
|
| 67 |
+
|
| 68 |
+
# -------------------- Utility Functions --------------------
|
| 69 |
def create_voice_component():
|
| 70 |
"""Create the voice input component"""
|
| 71 |
mycomponent = components.declare_component(
|
|
|
|
| 74 |
)
|
| 75 |
return mycomponent
|
| 76 |
|
|
|
|
| 77 |
def clean_for_speech(text: str) -> str:
|
|
|
|
| 78 |
text = text.replace("\n", " ")
|
| 79 |
text = text.replace("</s>", " ")
|
| 80 |
text = text.replace("#", "")
|
|
|
|
| 95 |
return out_fn
|
| 96 |
|
| 97 |
def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0):
|
|
|
|
| 98 |
return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch))
|
| 99 |
|
| 100 |
def play_and_download_audio(file_path):
|
|
|
|
| 106 |
|
| 107 |
@st.cache_resource
|
| 108 |
def get_model():
|
|
|
|
| 109 |
return SentenceTransformer('all-MiniLM-L6-v2')
|
| 110 |
|
| 111 |
@st.cache_data
|
| 112 |
def load_dataset_page(dataset_id, token, page, rows_per_page):
|
|
|
|
| 113 |
try:
|
| 114 |
start_idx = page * rows_per_page
|
| 115 |
end_idx = start_idx + rows_per_page
|
|
|
|
| 126 |
|
| 127 |
@st.cache_data
|
| 128 |
def get_dataset_info(dataset_id, token):
|
|
|
|
| 129 |
try:
|
| 130 |
dataset = load_dataset(dataset_id, token=token, streaming=True)
|
| 131 |
return dataset['train'].info
|
|
|
|
| 134 |
return None
|
| 135 |
|
| 136 |
def fetch_dataset_info(dataset_id):
|
|
|
|
| 137 |
info_url = f"https://huggingface.co/api/datasets/{dataset_id}"
|
| 138 |
try:
|
| 139 |
response = requests.get(info_url, timeout=30)
|
|
|
|
| 144 |
return None
|
| 145 |
|
| 146 |
def generate_filename(text):
|
|
|
|
| 147 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 148 |
safe_text = re.sub(r'[^\w\s-]', '', text[:50]).strip().lower()
|
| 149 |
safe_text = re.sub(r'[-\s]+', '-', safe_text)
|
| 150 |
+
return f"{timestamp}_{safe_text}.md"
|
| 151 |
+
|
| 152 |
+
def save_input_as_md(text):
|
| 153 |
+
if not text.strip():
|
| 154 |
+
return
|
| 155 |
+
fn = generate_filename(text)
|
| 156 |
+
full_path = os.path.join(SAVED_INPUTS_DIR, fn)
|
| 157 |
+
with open(full_path, 'w', encoding='utf-8') as f:
|
| 158 |
+
f.write(f"# User: {st.session_state['user_name']}\n")
|
| 159 |
+
f.write(f"**Timestamp:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n")
|
| 160 |
+
f.write(text)
|
| 161 |
+
return full_path
|
| 162 |
+
|
| 163 |
+
def list_saved_inputs():
|
| 164 |
+
files = sorted(glob.glob(os.path.join(SAVED_INPUTS_DIR, "*.md")))
|
| 165 |
+
return files
|
| 166 |
|
| 167 |
def render_result(result):
|
|
|
|
| 168 |
score = result.get('relevance_score', 0)
|
| 169 |
result_filtered = {k: v for k, v in result.items()
|
| 170 |
if k not in ['relevance_score', 'video_embed', 'description_embed', 'audio_embed']}
|
|
|
|
| 171 |
if 'youtube_id' in result:
|
| 172 |
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result.get('start_time', 0)}")
|
| 173 |
|
|
|
|
| 203 |
play_and_download_audio(audio_file)
|
| 204 |
|
| 205 |
class FastDatasetSearcher:
|
|
|
|
|
|
|
| 206 |
def __init__(self, dataset_id="tomg-group-umd/cinepile"):
|
| 207 |
self.dataset_id = dataset_id
|
| 208 |
self.text_model = get_model()
|
|
|
|
| 215 |
st.session_state['dataset_info'] = get_dataset_info(self.dataset_id, self.token)
|
| 216 |
|
| 217 |
def load_page(self, page=0):
|
|
|
|
| 218 |
return load_dataset_page(self.dataset_id, self.token, page, ROWS_PER_PAGE)
|
| 219 |
|
| 220 |
def quick_search(self, query, df):
|
|
|
|
| 221 |
if df.empty or not query.strip():
|
| 222 |
return df
|
| 223 |
|
| 224 |
try:
|
| 225 |
searchable_cols = []
|
| 226 |
for col in df.columns:
|
| 227 |
+
sample_val = df[col].iloc[0] if len(df) > 0 else ""
|
| 228 |
if not isinstance(sample_val, (np.ndarray, bytes)):
|
| 229 |
searchable_cols.append(col)
|
| 230 |
|
|
|
|
| 269 |
if text.strip():
|
| 270 |
text_tokens = set(text.lower().split())
|
| 271 |
matching_terms = query_terms.intersection(text_tokens)
|
| 272 |
+
keyword_score = len(matching_terms) / len(query_terms) if len(query_terms) > 0 else 0.0
|
| 273 |
|
| 274 |
text_embedding = self.text_model.encode([text], show_progress_bar=False)[0]
|
| 275 |
semantic_score = float(cosine_similarity([query_embedding], [text_embedding])[0][0])
|
|
|
|
| 302 |
st.error(f"Search error: {str(e)}")
|
| 303 |
return df
|
| 304 |
|
| 305 |
+
# -------------------- Main App --------------------
|
| 306 |
def main():
|
| 307 |
st.title("🎥 Smart Video & Voice Search")
|
| 308 |
|
| 309 |
+
# Load saved inputs (conversation history)
|
| 310 |
+
saved_files = list_saved_inputs()
|
| 311 |
+
|
| 312 |
# Initialize components
|
| 313 |
voice_component = create_voice_component()
|
| 314 |
search = FastDatasetSearcher()
|
|
|
|
| 316 |
# Voice input at top level
|
| 317 |
voice_val = voice_component(my_input_value="Start speaking...")
|
| 318 |
|
| 319 |
+
# User can override max items
|
| 320 |
+
with st.sidebar:
|
| 321 |
+
st.write(f"**Current User:** {st.session_state['user_name']}")
|
| 322 |
+
st.session_state['max_items'] = st.number_input("Max Items per search iteration:", min_value=1, max_value=1000, value=st.session_state['max_items'])
|
| 323 |
+
st.subheader("📝 Saved Inputs:")
|
| 324 |
+
# Show saved md files in order
|
| 325 |
+
for fpath in saved_files:
|
| 326 |
+
fname = os.path.basename(fpath)
|
| 327 |
+
st.write(f"- [{fname}]({fpath})")
|
| 328 |
+
|
| 329 |
if voice_val:
|
| 330 |
voice_text = str(voice_val).strip()
|
| 331 |
edited_input = st.text_area("✏️ Edit Voice Input:", value=voice_text, height=100)
|
| 332 |
|
| 333 |
+
# Auto-run default True now
|
| 334 |
run_option = st.selectbox("Select Search Type:",
|
| 335 |
+
["Quick Search", "Deep Search", "Voice Summary"])
|
| 336 |
|
| 337 |
col1, col2 = st.columns(2)
|
| 338 |
with col1:
|
| 339 |
+
autorun = st.checkbox("⚡ Auto-Run", value=True)
|
| 340 |
with col2:
|
| 341 |
full_audio = st.checkbox("🔊 Full Audio", value=False)
|
| 342 |
|
| 343 |
input_changed = (voice_text != st.session_state.get('old_val'))
|
| 344 |
|
| 345 |
if autorun and input_changed:
|
| 346 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|