Spaces:
Sleeping
Sleeping
| from langchain_core.messages import BaseMessage, AIMessage | |
| from langchain_core.runnables import RunnableLambda, Runnable | |
| from langchain_community.llms import Ollama | |
| from langchain.tools import Tool | |
| from langgraph.graph import MessageGraph | |
| import re | |
| llm = Ollama(model="gemma3:1b", temperature=0.0) # llama3.1 | |
| def create_agent(accent_tool_obj) -> tuple[Runnable, Runnable]: | |
| accent_tool = Tool( | |
| name="AccentAnalyzer", | |
| func=accent_tool_obj.analyze, | |
| description="Analyze a public MP4 video URL and determine the English accent with transcription." | |
| ) | |
| def analyze_node(messages: list[BaseMessage]) -> AIMessage: | |
| last_input = messages[-1].content | |
| match = re.search(r'https?://\S+', last_input) | |
| if match: | |
| url = match.group() | |
| result = accent_tool.func(url) | |
| else: | |
| result = "No valid video URL found in your message." | |
| return AIMessage(content=result) | |
| graph = MessageGraph() | |
| graph.add_node("analyze_accent", RunnableLambda(analyze_node)) | |
| graph.set_entry_point("analyze_accent") | |
| graph.set_finish_point("analyze_accent") | |
| analysis_agent = graph.compile() | |
| # Follow-up agent that uses transcript and responds to questions | |
| def follow_up_node(messages: list[BaseMessage]) -> AIMessage: | |
| user_question = messages[-1].content | |
| transcript = accent_tool_obj.last_transcript or "" | |
| prompt = f"""You are given this transcript of a video: | |
| \"\"\"{transcript}\"\"\" | |
| Now respond to the user's follow-up question: {user_question} | |
| """ | |
| response = llm.invoke(prompt) | |
| return AIMessage(content=response) | |
| follow_up_agent = RunnableLambda(follow_up_node) | |
| return analysis_agent, follow_up_agent | |