File size: 13,057 Bytes
dd850a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import torch
import numpy as np
from typing import List, Dict, Any, Optional

class AttentionProcessor:
    @staticmethod
    def process_attention_separate(
        attention_data: Dict[str, Any],
        input_tokens: List[str],
        output_tokens: List[str]
    ) -> List[Dict[str, torch.Tensor]]:
        """
        Process attention with separate normalization for input and output.
        This preserves the relative importance within each group.
        """
        attentions = attention_data['attentions']
        input_len_for_attention = attention_data['input_len_for_attention']
        output_len = attention_data['output_len']
        
        if not attentions:
            return [{'input_attention': torch.zeros(input_len_for_attention),
                    'output_attention': None} for _ in range(output_len)]
        
        attention_matrices = []
        num_steps = len(attentions)
        
        if num_steps == 0:
            print("Warning: No attention steps found in output.")
            return [{'input_attention': torch.zeros(input_len_for_attention),
                    'output_attention': None} for _ in range(output_len)]
        
        steps_to_process = min(num_steps, output_len)
        
        for i in range(steps_to_process):
            step_attentions = attentions[i]
            input_attention_layers = []
            output_attention_layers = []
            
            for layer_idx, layer_attn in enumerate(step_attentions):
                try:
                    # Extract attention to input tokens (skip BOS token at position 0)
                    input_indices = slice(1, 1 + input_len_for_attention)
                    if layer_attn.shape[3] >= input_indices.stop:
                        # Get attention from current token (position 0 in generation) to input
                        input_attn = layer_attn[0, :, 0, input_indices]
                        input_attention_layers.append(input_attn)
                        
                        # Extract attention to previous output tokens
                        if i > 0:
                            output_indices = slice(1 + input_len_for_attention, 1 + input_len_for_attention + i)
                            if layer_attn.shape[3] >= output_indices.stop:
                                output_attn = layer_attn[0, :, 0, output_indices]
                                output_attention_layers.append(output_attn)
                            else:
                                output_attention_layers.append(
                                    torch.zeros((layer_attn.shape[1], i), device=layer_attn.device)
                                )
                    else:
                        input_attention_layers.append(
                            torch.zeros((layer_attn.shape[1], input_len_for_attention), device=layer_attn.device)
                        )
                        if i > 0:
                            output_attention_layers.append(
                                torch.zeros((layer_attn.shape[1], i), device=layer_attn.device)
                            )
                
                except Exception as e:
                    print(f"Error processing attention at step {i}, layer {layer_idx}: {e}")
                    input_attention_layers.append(
                        torch.zeros((layer_attn.shape[1], input_len_for_attention), device=layer_attn.device)
                    )
                    if i > 0:
                        output_attention_layers.append(
                            torch.zeros((layer_attn.shape[1], i), device=layer_attn.device)
                        )
            
            # Average across layers and heads
            if input_attention_layers:
                avg_input_attn = torch.mean(torch.stack(input_attention_layers).float(), dim=[0, 1])
            else:
                avg_input_attn = torch.zeros(input_len_for_attention)
            
            avg_output_attn = None
            if i > 0 and output_attention_layers:
                avg_output_attn = torch.mean(torch.stack(output_attention_layers).float(), dim=[0, 1])
            elif i > 0:
                avg_output_attn = torch.zeros(i)
            
            # Normalize separately with epsilon for numerical stability
            epsilon = 1e-8
            input_sum = avg_input_attn.sum() + epsilon
            normalized_input_attn = avg_input_attn / input_sum
            
            normalized_output_attn = None
            if i > 0 and avg_output_attn is not None:
                output_sum = avg_output_attn.sum() + epsilon
                normalized_output_attn = avg_output_attn / output_sum
            
            attention_matrices.append({
                'input_attention': normalized_input_attn.cpu(),
                'output_attention': normalized_output_attn.cpu() if normalized_output_attn is not None else None,
                'raw_input_attention': avg_input_attn.cpu(),  # Keep raw for analysis
                'raw_output_attention': avg_output_attn.cpu() if avg_output_attn is not None else None
            })
        
        # Fill remaining steps with zeros if needed
        while len(attention_matrices) < output_len:
            attention_matrices.append({
                'input_attention': torch.zeros(input_len_for_attention),
                'output_attention': None,
                'raw_input_attention': torch.zeros(input_len_for_attention),
                'raw_output_attention': None
            })
        
        return attention_matrices
    
    @staticmethod
    def process_attention_joint(
        attention_data: Dict[str, Any],
        input_tokens: List[str],
        output_tokens: List[str]
    ) -> List[Dict[str, torch.Tensor]]:
        """
        Process attention with joint normalization across input and output.
        This preserves the relative importance across all tokens.
        """
        attentions = attention_data['attentions']
        input_len_for_attention = attention_data['input_len_for_attention']
        output_len = attention_data['output_len']
        
        if not attentions:
            return [{'input_attention': torch.zeros(input_len_for_attention),
                    'output_attention': None} for _ in range(output_len)]
        
        attention_matrices = []
        num_steps = len(attentions)
        
        if num_steps == 0:
            print("Warning: No attention steps found in output.")
            return [{'input_attention': torch.zeros(input_len_for_attention),
                    'output_attention': None} for _ in range(output_len)]
        
        steps_to_process = min(num_steps, output_len)
        
        for i in range(steps_to_process):
            step_attentions = attentions[i]
            input_attention_layers = []
            output_attention_layers = []
            
            for layer_idx, layer_attn in enumerate(step_attentions):
                try:
                    # Extract attention to input tokens
                    input_indices = slice(1, 1 + input_len_for_attention)
                    if layer_attn.shape[3] >= input_indices.stop:
                        input_attn = layer_attn[0, :, 0, input_indices]
                        input_attention_layers.append(input_attn)
                        
                        # Extract attention to previous output tokens
                        if i > 0:
                            output_indices = slice(1 + input_len_for_attention, 1 + input_len_for_attention + i)
                            if layer_attn.shape[3] >= output_indices.stop:
                                output_attn = layer_attn[0, :, 0, output_indices]
                                output_attention_layers.append(output_attn)
                            else:
                                output_attention_layers.append(
                                    torch.zeros((layer_attn.shape[1], i), device=layer_attn.device)
                                )
                    else:
                        input_attention_layers.append(
                            torch.zeros((layer_attn.shape[1], input_len_for_attention), device=layer_attn.device)
                        )
                        if i > 0:
                            output_attention_layers.append(
                                torch.zeros((layer_attn.shape[1], i), device=layer_attn.device)
                            )
                
                except Exception as e:
                    print(f"Error processing attention at step {i}, layer {layer_idx}: {e}")
                    input_attention_layers.append(
                        torch.zeros((layer_attn.shape[1], input_len_for_attention), device=layer_attn.device)
                    )
                    if i > 0:
                        output_attention_layers.append(
                            torch.zeros((layer_attn.shape[1], i), device=layer_attn.device)
                        )
            
            # Average across layers and heads
            if input_attention_layers:
                avg_input_attn = torch.mean(torch.stack(input_attention_layers).float(), dim=[0, 1])
            else:
                avg_input_attn = torch.zeros(input_len_for_attention)
            
            avg_output_attn = None
            if i > 0 and output_attention_layers:
                avg_output_attn = torch.mean(torch.stack(output_attention_layers).float(), dim=[0, 1])
            elif i > 0:
                avg_output_attn = torch.zeros(i)
            
            # Joint normalization
            epsilon = 1e-8
            if i > 0 and avg_output_attn is not None:
                # Concatenate and normalize together
                combined_attn = torch.cat([avg_input_attn, avg_output_attn])
                sum_attn = combined_attn.sum() + epsilon
                normalized_combined = combined_attn / sum_attn
                normalized_input_attn = normalized_combined[:input_len_for_attention]
                normalized_output_attn = normalized_combined[input_len_for_attention:]
            else:
                # Only input attention available
                sum_attn = avg_input_attn.sum() + epsilon
                normalized_input_attn = avg_input_attn / sum_attn
                normalized_output_attn = None
            
            attention_matrices.append({
                'input_attention': normalized_input_attn.cpu(),
                'output_attention': normalized_output_attn.cpu() if normalized_output_attn is not None else None
            })
        
        # Fill remaining steps with zeros if needed
        while len(attention_matrices) < output_len:
            attention_matrices.append({
                'input_attention': torch.zeros(input_len_for_attention),
                'output_attention': None
            })
        
        return attention_matrices
    
    @staticmethod
    def extract_attention_for_step(
        attention_data: Dict[str, Any],
        step: int,
        input_len: int
    ) -> Dict[str, torch.Tensor]:
        """
        Extract attention weights for a specific generation step.
        Optimized to only process the needed step.
        """
        attentions = attention_data['attentions']
        
        if step >= len(attentions):
            return {
                'input_attention': torch.zeros(input_len),
                'output_attention': None
            }
        
        step_attentions = attentions[step]
        input_attention_layers = []
        output_attention_layers = []
        
        for layer_attn in step_attentions:
            # Extract input attention
            input_indices = slice(1, 1 + input_len)
            if layer_attn.shape[3] >= input_indices.stop:
                input_attn = layer_attn[0, :, 0, input_indices]
                input_attention_layers.append(input_attn)
                
                # Extract output attention if there are previous outputs
                if step > 0:
                    output_indices = slice(1 + input_len, 1 + input_len + step)
                    if layer_attn.shape[3] >= output_indices.stop:
                        output_attn = layer_attn[0, :, 0, output_indices]
                        output_attention_layers.append(output_attn)
        
        # Average and normalize
        if input_attention_layers:
            avg_input = torch.mean(torch.stack(input_attention_layers).float(), dim=[0, 1])
            normalized_input = avg_input / (avg_input.sum() + 1e-8)
        else:
            normalized_input = torch.zeros(input_len)
        
        normalized_output = None
        if step > 0 and output_attention_layers:
            avg_output = torch.mean(torch.stack(output_attention_layers).float(), dim=[0, 1])
            normalized_output = avg_output / (avg_output.sum() + 1e-8)
        
        return {
            'input_attention': normalized_input.cpu(),
            'output_attention': normalized_output.cpu() if normalized_output is not None else None
        }