Spaces:
Runtime error
Runtime error
| # from whisper_jax import FlaxWhisperPipline | |
| # import jax.numpy as jnp | |
| # import whisper | |
| # print(whisper.__file__) | |
| from openai import OpenAI | |
| from decouple import config | |
| import os | |
| OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") | |
| client = OpenAI() | |
| os.environ['OPENAI_API_KEY'] = OPENAI_API_KEY | |
| # def whisper_pipeline_tpu(audio): | |
| # pipeline = FlaxWhisperPipline("openai/whisper-large-v3", dtype=jnp.bfloat16, batch_size=16) | |
| # text = pipeline(audio) | |
| # return text | |
| # def whisper_pipeline(audio_path): | |
| # model = whisper.load_model("medium") | |
| # # load audio and pad/trim it to fit 30 seconds | |
| # audio = whisper.load_audio(audio_path) | |
| # audio = whisper.pad_or_trim(audio) | |
| # # make log-Mel spectrogram and move to the same device as the model | |
| # mel = whisper.log_mel_spectrogram(audio).to(model.device) | |
| # # detect the spoken language | |
| # _, probs = model.detect_language(mel) | |
| # print(f"Detected language: {max(probs, key=probs.get)}") | |
| # # decode the audio | |
| # options = whisper.DecodingOptions() | |
| # result = whisper.decode(model, mel, options) | |
| # # print the recognized text | |
| # print(result.text) | |
| # return result.text | |
| def whisper_openai(audio_path): | |
| audio_file= open(audio_path, "rb") | |
| transcript = client.audio.transcriptions.create( | |
| model="whisper-1", | |
| file=audio_file | |
| ) | |
| return transcript |