Spaces:
Paused
Paused
| import gradio as gr | |
| ############### VANILLA INFERENCE ############### | |
| # from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
| # model_path = "anzorq/m2m100_418M_ft_ru-kbd_44K" | |
| # src_lang="ru" | |
| # tgt_lang="zu" | |
| # # tokenizer = AutoTokenizer.from_pretrained(model_path, src_lang=src_lang) | |
| # tokenizer = AutoTokenizer.from_pretrained(model_path) | |
| # model = AutoModelForSeq2SeqLM.from_pretrained(model_path, use_safetensors=True)#, load_in_4bit=True, device_map="auto") | |
| # model.to_bettertransformer() | |
| # def translate(text, num_beams=4, num_return_sequences=4): | |
| # inputs = tokenizer(text, return_tensors="pt") | |
| # num_return_sequences = min(num_return_sequences, num_beams) | |
| # translated_tokens = model.generate( | |
| # **inputs, forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], num_beams=num_beams, num_return_sequences=num_return_sequences | |
| # ) | |
| # translations = [] | |
| # for translation in tokenizer.batch_decode(translated_tokens, skip_special_tokens=True): | |
| # translations.append(translation) | |
| # # result = {"input":text, "translations":translations} | |
| # return text, translations | |
| ############### IPEX OPTIMIZED INFERENCE ############### | |
| # from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
| # from optimum.bettertransformer import BetterTransformer | |
| # import intel_extension_for_pytorch as ipex | |
| # from transformers.modeling_outputs import BaseModelOutput | |
| # import torch | |
| # model_path = "anzorq/m2m100_418M_ft_ru-kbd_44K" | |
| # src_lang = "ru" | |
| # tgt_lang = "zu" | |
| # tokenizer = AutoTokenizer.from_pretrained(model_path) | |
| # model = AutoModelForSeq2SeqLM.from_pretrained(model_path) | |
| # # flash attention optimization | |
| # model = BetterTransformer.transform(model, keep_original_model=False) | |
| # # ipex optimization | |
| # model.eval() | |
| # model = ipex.optimize(model, dtype=torch.float, level="O1", conv_bn_folding=False, inplace=True) | |
| # # Get the encoder | |
| # encoder = model.get_encoder() | |
| # # Prepare an example input for the encoder | |
| # example_input_text = "Example text in Russian" | |
| # inputs_example = tokenizer(example_input_text, return_tensors="pt") | |
| # # Trace just the encoder with strict=False | |
| # scripted_encoder = torch.jit.trace(encoder, inputs_example['input_ids'], strict=False) | |
| # def translate(text, num_beams=4, num_return_sequences=4): | |
| # inputs = tokenizer(text, return_tensors="pt") | |
| # num_return_sequences = min(num_return_sequences, num_beams) | |
| # # Use the scripted encoder for the first step of inference | |
| # encoder_output_dict = scripted_encoder(inputs['input_ids']) | |
| # encoder_outputs = BaseModelOutput(last_hidden_state=encoder_output_dict['last_hidden_state']) | |
| # # Use the original, untraced model for the second step, passing the encoder's outputs as inputs | |
| # translated_tokens = model.generate( | |
| # encoder_outputs=encoder_outputs, | |
| # forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], | |
| # num_beams=num_beams, | |
| # num_return_sequences=num_return_sequences | |
| # ) | |
| # translations = [tokenizer.decode(translation, skip_special_tokens=True) for translation in translated_tokens] | |
| # return text, translations | |
| # ############### ONNX MODEL INFERENCE ############### | |
| # from transformers import AutoTokenizer, pipeline | |
| # from optimum.onnxruntime import ORTModelForSeq2SeqLM | |
| # model_id = "anzorq/m2m100_418M_ft_ru-kbd_44K" | |
| # model = ORTModelForSeq2SeqLM.from_pretrained(model_id, subfolder="onnx", file_name="encoder_model_optimized.onnx") | |
| # tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| # def translate(text, num_beams=4, num_return_sequences=4): | |
| # inputs = tokenizer(text, return_tensors="pt") | |
| # num_return_sequences = min(num_return_sequences, num_beams) | |
| # translated_tokens = model.generate( | |
| # **inputs, forced_bos_token_id=tokenizer.lang_code_to_id["zu"], num_beams=num_beams, num_return_sequences=num_return_sequences | |
| # ) | |
| # translations = [] | |
| # for translation in tokenizer.batch_decode(translated_tokens, skip_special_tokens=True): | |
| # translations.append(translation) | |
| # return text, translations | |
| ############### CTRANSLATE2 INFERENCE ############### | |
| import ctranslate2 | |
| import transformers | |
| translator = ctranslate2.Translator("ctranslate2") | |
| tokenizer = transformers.AutoTokenizer.from_pretrained("anzorq/m2m100_418M_ft_ru-kbd_44K") | |
| def translate(text, num_beams=4, num_return_sequences=4): | |
| num_return_sequences = min(num_return_sequences, num_beams) | |
| source = tokenizer.convert_ids_to_tokens(tokenizer.encode(text)) | |
| target_prefix = [tokenizer.lang_code_to_token["zu"]] | |
| results = translator.translate_batch( | |
| [source], | |
| target_prefix=[target_prefix], | |
| beam_size=num_beams, | |
| num_hypotheses=num_return_sequences | |
| ) | |
| translations = [] | |
| for hypothesis in results[0].hypotheses: | |
| target = hypothesis[1:] | |
| decoded_sentence = tokenizer.decode(tokenizer.convert_tokens_to_ids(target)) | |
| translations.append(decoded_sentence) | |
| return text, translations | |
| output = gr.Textbox() | |
| # with gr.Accordion("Advanced Options"): | |
| num_beams = gr.Slider(2, 10, step=1, label="Number of beams", value=4) | |
| num_return_sequences = gr.Slider(2, 10, step=1, label="Number of returned sentences", value=4) | |
| title = "Russian-Circassian translator demo" | |
| article = "<p style='text-align: center'>Want to help? Join the <a href='https://discord.gg/cXwv495r' target='_blank'>Discord server</a></p>" | |
| # examples = [ | |
| # ["Мы идем домой"], | |
| # ["Сегодня хорошая погода"], | |
| # ["Дети играют во дворе"], | |
| # ["We live in a big house"], | |
| # ["Tu es une bonne personne."], | |
| # ["أين تعيش؟"], | |
| # ["Bir şeyler yapmak istiyorum."], | |
| # ["– Если я его отпущу, то ты вовек не сможешь его поймать, – заявил Сосруко."], | |
| # ["Как только старик ушел, Сатаней пошла к Саусырыко."], | |
| # ["我永远不会放弃你。"], | |
| # ["우리는 소치에 살고 있습니다."], | |
| # ] | |
| gr.Interface( | |
| fn=translate, | |
| inputs=["text", num_beams, num_return_sequences], | |
| outputs=["text", output], | |
| title=title, | |
| # examples=examples, | |
| article=article).launch() | |
| # import gradio as gr | |
| # title = "Русско-черкесский переводчик" | |
| # description = "Demo of a Russian-Circassian (Kabardian dialect) translator. <br>It is based on Facebook's <a href=\"https://about.fb.com/news/2020/10/first-multilingual-machine-translation-model/\">M2M-100 model</a> machine learning model, and has been trained on 45,000 Russian-Circassian sentence pairs. <br>It can also translate from 100 other languages to Circassian (English, French, Spanish, etc.), but less accurately. <br>The data corpus is constantly being expanded, and we need help in finding sentence sources, OCR, data cleaning, etc. <br>If you are interested in helping out with this project, please contact me at the link below.<br><br>This is only a demo, not a finished product. Translation quality is still low and will improve with time and more data.<br>45,000 sentence pairs is not enough to create an accurate machine translation model, and more data is needed.<br>You can help by finding sentence sources (books, web pages, etc.), scanning books, OCRing documents, data cleaning, and other tasks.<br><br>If you are interested in helping out with this project, contact me at the link below." | |
| # article = """<p style='text-align: center'><a href='https://arxiv.org/abs/1806.00187'>Scaling Neural Machine Translation</a> | <a href='https://github.com/pytorch/fairseq/'>Github Repo</a></p>""" | |
| # examples = [ | |
| # ["Мы идем домой"], | |
| # ["Сегодня хорошая погода"], | |
| # ["Дети играют во дворе"], | |
| # ["We live in a big house"], | |
| # ["Tu es une bonne personne."], | |
| # ["أين تعيش؟"], | |
| # ["Bir şeyler yapmak istiyorum."], | |
| # ] | |
| # gr.Interface.load("models/anzorq/m2m100_418M_ft_ru-kbd_44K", title=title, description=description, article=article, examples=examples).launch() |