Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,6 +13,7 @@ import subprocess
|
|
| 13 |
import shutil
|
| 14 |
import base64
|
| 15 |
import logging
|
|
|
|
| 16 |
|
| 17 |
# Set up logging
|
| 18 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
@@ -58,7 +59,6 @@ sys.path.append(MV_ADAPTER_CODE_DIR)
|
|
| 58 |
sys.path.append(os.path.join(MV_ADAPTER_CODE_DIR, "scripts"))
|
| 59 |
|
| 60 |
try:
|
| 61 |
-
# triposg
|
| 62 |
from image_process import prepare_image
|
| 63 |
from briarmbg import BriaRMBG
|
| 64 |
snapshot_download("briaai/RMBG-1.4", local_dir=RMBG_PRETRAINED_MODEL)
|
|
@@ -72,7 +72,6 @@ except Exception as e:
|
|
| 72 |
raise
|
| 73 |
|
| 74 |
try:
|
| 75 |
-
# mv adapter
|
| 76 |
NUM_VIEWS = 6
|
| 77 |
from inference_ig2mv_sdxl import prepare_pipeline, preprocess_image, remove_bg
|
| 78 |
from mvadapter.utils import get_orthogonal_camera, tensor_to_image, make_image_grid
|
|
@@ -144,7 +143,7 @@ def run_full(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_
|
|
| 144 |
|
| 145 |
torch.cuda.empty_cache()
|
| 146 |
|
| 147 |
-
height, width =
|
| 148 |
cameras = get_orthogonal_camera(
|
| 149 |
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
| 150 |
distance=[1.8] * NUM_VIEWS,
|
|
@@ -168,13 +167,7 @@ def run_full(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_
|
|
| 168 |
normal_background=0.0,
|
| 169 |
)
|
| 170 |
control_images = (
|
| 171 |
-
|
| 172 |
-
[
|
| 173 |
-
(render_out.pos + 0.5).clamp(0, 1),
|
| 174 |
-
(render_out.normal / 2 + 0.5).clamp(0, 1),
|
| 175 |
-
],
|
| 176 |
-
dim=-1,
|
| 177 |
-
)
|
| 178 |
.permute(0, 3, 1, 2)
|
| 179 |
.to(DEVICE)
|
| 180 |
)
|
|
@@ -234,14 +227,12 @@ def run_full(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_
|
|
| 234 |
def gradio_generate(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_scale: float = 7.5, simplify: bool = True, target_face_num: int = DEFAULT_FACE_NUMBER):
|
| 235 |
try:
|
| 236 |
logger.info("Starting gradio_generate")
|
| 237 |
-
# Verify API key
|
| 238 |
api_key = os.getenv("POLYGENIX_API_KEY", "your-secret-api-key")
|
| 239 |
request = gr.Request()
|
| 240 |
if not request.headers.get("x-api-key") == api_key:
|
| 241 |
logger.error("Invalid API key")
|
| 242 |
raise ValueError("Invalid API key")
|
| 243 |
|
| 244 |
-
# Handle base64 image or file path
|
| 245 |
if image.startswith("data:image"):
|
| 246 |
logger.info("Processing base64 image")
|
| 247 |
base64_string = image.split(",")[1]
|
|
@@ -291,9 +282,7 @@ def get_random_seed(randomize_seed, seed):
|
|
| 291 |
logger.error(f"Error in get_random_seed: {str(e)}")
|
| 292 |
raise
|
| 293 |
|
| 294 |
-
|
| 295 |
def download_image(url: str, save_path: str) -> str:
|
| 296 |
-
"""Download an image from a URL and save it locally."""
|
| 297 |
try:
|
| 298 |
logger.info(f"Downloading image from {url}")
|
| 299 |
response = requests.get(url, stream=True)
|
|
@@ -312,7 +301,6 @@ def download_image(url: str, save_path: str) -> str:
|
|
| 312 |
def run_segmentation(image):
|
| 313 |
try:
|
| 314 |
logger.info("Running segmentation")
|
| 315 |
-
# Handle FileData dict or URL
|
| 316 |
if isinstance(image, dict):
|
| 317 |
image_path = image.get("path") or image.get("url")
|
| 318 |
if not image_path:
|
|
@@ -340,7 +328,7 @@ def run_segmentation(image):
|
|
| 340 |
@spaces.GPU(duration=5)
|
| 341 |
@torch.no_grad()
|
| 342 |
def image_to_3d(
|
| 343 |
-
image,
|
| 344 |
seed: int,
|
| 345 |
num_inference_steps: int,
|
| 346 |
guidance_scale: float,
|
|
@@ -350,7 +338,6 @@ def image_to_3d(
|
|
| 350 |
):
|
| 351 |
try:
|
| 352 |
logger.info("Running image_to_3d")
|
| 353 |
-
# Handle FileData dict from gradio_client
|
| 354 |
if isinstance(image, dict):
|
| 355 |
image_path = image.get("path") or image.get("url")
|
| 356 |
if not image_path:
|
|
@@ -396,7 +383,7 @@ def image_to_3d(
|
|
| 396 |
def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
|
| 397 |
try:
|
| 398 |
logger.info("Running texture generation")
|
| 399 |
-
height, width =
|
| 400 |
cameras = get_orthogonal_camera(
|
| 401 |
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
| 402 |
distance=[1.8] * NUM_VIEWS,
|
|
@@ -420,13 +407,7 @@ def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
|
|
| 420 |
normal_background=0.0,
|
| 421 |
)
|
| 422 |
control_images = (
|
| 423 |
-
|
| 424 |
-
[
|
| 425 |
-
(render_out.pos + 0.5).clamp(0, 1),
|
| 426 |
-
(render_out.normal / 2 + 0.5).clamp(0, 1),
|
| 427 |
-
],
|
| 428 |
-
dim=-1,
|
| 429 |
-
)
|
| 430 |
.permute(0, 3, 1, 2)
|
| 431 |
.to(DEVICE)
|
| 432 |
)
|
|
@@ -490,7 +471,6 @@ def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
|
|
| 490 |
def run_full_api(image, seed: int = 0, num_inference_steps: int = 50, guidance_scale: float = 7.5, simplify: bool = True, target_face_num: int = DEFAULT_FACE_NUMBER, req: gr.Request = None):
|
| 491 |
try:
|
| 492 |
logger.info("Running run_full_api")
|
| 493 |
-
# Handle FileData dict or URL
|
| 494 |
if isinstance(image, dict):
|
| 495 |
image_path = image.get("path") or image.get("url")
|
| 496 |
if not image_path:
|
|
|
|
| 13 |
import shutil
|
| 14 |
import base64
|
| 15 |
import logging
|
| 16 |
+
import requests
|
| 17 |
|
| 18 |
# Set up logging
|
| 19 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
|
| 59 |
sys.path.append(os.path.join(MV_ADAPTER_CODE_DIR, "scripts"))
|
| 60 |
|
| 61 |
try:
|
|
|
|
| 62 |
from image_process import prepare_image
|
| 63 |
from briarmbg import BriaRMBG
|
| 64 |
snapshot_download("briaai/RMBG-1.4", local_dir=RMBG_PRETRAINED_MODEL)
|
|
|
|
| 72 |
raise
|
| 73 |
|
| 74 |
try:
|
|
|
|
| 75 |
NUM_VIEWS = 6
|
| 76 |
from inference_ig2mv_sdxl import prepare_pipeline, preprocess_image, remove_bg
|
| 77 |
from mvadapter.utils import get_orthogonal_camera, tensor_to_image, make_image_grid
|
|
|
|
| 143 |
|
| 144 |
torch.cuda.empty_cache()
|
| 145 |
|
| 146 |
+
height, width = 1920, 1080 # Set resolution for YouTube Shorts, TikTok, Reels
|
| 147 |
cameras = get_orthogonal_camera(
|
| 148 |
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
| 149 |
distance=[1.8] * NUM_VIEWS,
|
|
|
|
| 167 |
normal_background=0.0,
|
| 168 |
)
|
| 169 |
control_images = (
|
| 170 |
+
(render_out.pos + 0.5).clamp(0, 1) # Use only position map, remove normal map
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
.permute(0, 3, 1, 2)
|
| 172 |
.to(DEVICE)
|
| 173 |
)
|
|
|
|
| 227 |
def gradio_generate(image: str, seed: int = 0, num_inference_steps: int = 50, guidance_scale: float = 7.5, simplify: bool = True, target_face_num: int = DEFAULT_FACE_NUMBER):
|
| 228 |
try:
|
| 229 |
logger.info("Starting gradio_generate")
|
|
|
|
| 230 |
api_key = os.getenv("POLYGENIX_API_KEY", "your-secret-api-key")
|
| 231 |
request = gr.Request()
|
| 232 |
if not request.headers.get("x-api-key") == api_key:
|
| 233 |
logger.error("Invalid API key")
|
| 234 |
raise ValueError("Invalid API key")
|
| 235 |
|
|
|
|
| 236 |
if image.startswith("data:image"):
|
| 237 |
logger.info("Processing base64 image")
|
| 238 |
base64_string = image.split(",")[1]
|
|
|
|
| 282 |
logger.error(f"Error in get_random_seed: {str(e)}")
|
| 283 |
raise
|
| 284 |
|
|
|
|
| 285 |
def download_image(url: str, save_path: str) -> str:
|
|
|
|
| 286 |
try:
|
| 287 |
logger.info(f"Downloading image from {url}")
|
| 288 |
response = requests.get(url, stream=True)
|
|
|
|
| 301 |
def run_segmentation(image):
|
| 302 |
try:
|
| 303 |
logger.info("Running segmentation")
|
|
|
|
| 304 |
if isinstance(image, dict):
|
| 305 |
image_path = image.get("path") or image.get("url")
|
| 306 |
if not image_path:
|
|
|
|
| 328 |
@spaces.GPU(duration=5)
|
| 329 |
@torch.no_grad()
|
| 330 |
def image_to_3d(
|
| 331 |
+
image,
|
| 332 |
seed: int,
|
| 333 |
num_inference_steps: int,
|
| 334 |
guidance_scale: float,
|
|
|
|
| 338 |
):
|
| 339 |
try:
|
| 340 |
logger.info("Running image_to_3d")
|
|
|
|
| 341 |
if isinstance(image, dict):
|
| 342 |
image_path = image.get("path") or image.get("url")
|
| 343 |
if not image_path:
|
|
|
|
| 383 |
def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
|
| 384 |
try:
|
| 385 |
logger.info("Running texture generation")
|
| 386 |
+
height, width = 1920, 1080 # Set resolution for YouTube Shorts, TikTok, Reels
|
| 387 |
cameras = get_orthogonal_camera(
|
| 388 |
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
| 389 |
distance=[1.8] * NUM_VIEWS,
|
|
|
|
| 407 |
normal_background=0.0,
|
| 408 |
)
|
| 409 |
control_images = (
|
| 410 |
+
(render_out.pos + 0.5).clamp(0, 1) # Use only position map, remove normal map
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 411 |
.permute(0, 3, 1, 2)
|
| 412 |
.to(DEVICE)
|
| 413 |
)
|
|
|
|
| 471 |
def run_full_api(image, seed: int = 0, num_inference_steps: int = 50, guidance_scale: float = 7.5, simplify: bool = True, target_face_num: int = DEFAULT_FACE_NUMBER, req: gr.Request = None):
|
| 472 |
try:
|
| 473 |
logger.info("Running run_full_api")
|
|
|
|
| 474 |
if isinstance(image, dict):
|
| 475 |
image_path = image.get("path") or image.get("url")
|
| 476 |
if not image_path:
|