#2 fix stutterdectector
Browse files
diagnosis/ai_engine/detect_stuttering.py
CHANGED
|
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# diagnosis/ai_engine/detect_stuttering.py
|
| 2 |
+
import librosa
|
| 3 |
+
import torch
|
| 4 |
+
import torchaudio
|
| 5 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 6 |
+
from torch.nn import CTCLoss
|
| 7 |
+
import logging
|
| 8 |
+
from typing import Dict, List, Tuple
|
| 9 |
+
import time
|
| 10 |
+
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class StutterDetector:
|
| 15 |
+
"""
|
| 16 |
+
Stutter detection using Wav2Vec2 models
|
| 17 |
+
Adapted from: https://github.com/wittyicon29/Stutter_Detection
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
def __init__(self):
|
| 21 |
+
"""Initialize models - load once and reuse"""
|
| 22 |
+
logger.info("🔄 Initializing StutterDetector models...")
|
| 23 |
+
|
| 24 |
+
try:
|
| 25 |
+
# Log model loading source
|
| 26 |
+
import os
|
| 27 |
+
hf_cache = os.environ.get('HF_HOME') or os.environ.get('TRANSFORMERS_CACHE')
|
| 28 |
+
if hf_cache:
|
| 29 |
+
logger.info(f"📂 Custom Hugging Face cache: {hf_cache}")
|
| 30 |
+
else:
|
| 31 |
+
home = os.path.expanduser('~')
|
| 32 |
+
default_cache = os.path.join(home, '.cache', 'huggingface')
|
| 33 |
+
logger.info(f"📂 Default Hugging Face cache: {default_cache}")
|
| 34 |
+
|
| 35 |
+
# Load base model for transcription
|
| 36 |
+
logger.info("📥 Loading base model: facebook/wav2vec2-base-960h")
|
| 37 |
+
self.base_model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
| 38 |
+
self.base_processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
| 39 |
+
logger.info("✅ Base model loaded successfully")
|
| 40 |
+
|
| 41 |
+
# Load large model for detailed analysis
|
| 42 |
+
logger.info("📥 Loading large model: facebook/wav2vec2-large-960h-lv60-self")
|
| 43 |
+
self.large_model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
|
| 44 |
+
self.large_processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
|
| 45 |
+
logger.info("✅ Large model loaded successfully")
|
| 46 |
+
|
| 47 |
+
# Load XLSR model for target transcript generation
|
| 48 |
+
logger.info("📥 Loading XLSR model: jonatasgrosman/wav2vec2-large-xlsr-53-english")
|
| 49 |
+
self.xlsr_model = Wav2Vec2ForCTC.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-english")
|
| 50 |
+
self.xlsr_processor = Wav2Vec2Processor.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-english")
|
| 51 |
+
logger.info("✅ XLSR model loaded successfully")
|
| 52 |
+
|
| 53 |
+
logger.info("✅ All models loaded successfully")
|
| 54 |
+
|
| 55 |
+
except Exception as e:
|
| 56 |
+
logger.error(f"❌ Model loading failed: {e}")
|
| 57 |
+
raise
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def analyze_audio(self, audio_file_path: str, proper_transcript: str = "") -> Dict:
|
| 61 |
+
"""
|
| 62 |
+
Complete analysis pipeline
|
| 63 |
+
|
| 64 |
+
Args:
|
| 65 |
+
audio_file_path: Path to audio file
|
| 66 |
+
proper_transcript: Optional expected transcript (if available)
|
| 67 |
+
|
| 68 |
+
Returns:
|
| 69 |
+
Dictionary with complete analysis results
|
| 70 |
+
"""
|
| 71 |
+
start_time = time.time()
|
| 72 |
+
|
| 73 |
+
try:
|
| 74 |
+
logger.info(f"🎯 Starting analysis for: {audio_file_path}")
|
| 75 |
+
|
| 76 |
+
# Step 1: Generate target transcript if not provided
|
| 77 |
+
if not proper_transcript:
|
| 78 |
+
proper_transcript = self.generate_target_transcript(audio_file_path)
|
| 79 |
+
logger.info(f"📝 Generated target transcript: {proper_transcript}")
|
| 80 |
+
|
| 81 |
+
proper_transcript = proper_transcript.upper()
|
| 82 |
+
|
| 83 |
+
# Step 2: Transcribe and detect stuttering
|
| 84 |
+
transcription_result = self.transcribe_and_detect(audio_file_path, proper_transcript)
|
| 85 |
+
|
| 86 |
+
# Step 3: Calculate CTC loss and find stutter timestamps
|
| 87 |
+
ctc_loss, stutter_timestamps = self.calculate_stutter_timestamps(
|
| 88 |
+
audio_file_path,
|
| 89 |
+
proper_transcript
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
# Step 4: Aggregate results
|
| 93 |
+
analysis_duration = time.time() - start_time
|
| 94 |
+
|
| 95 |
+
result = {
|
| 96 |
+
'actual_transcript': transcription_result['transcription'],
|
| 97 |
+
'target_transcript': proper_transcript,
|
| 98 |
+
'mismatched_chars': transcription_result['stuttered_chars'],
|
| 99 |
+
'mismatch_percentage': transcription_result['mismatch_percentage'],
|
| 100 |
+
'ctc_loss_score': ctc_loss,
|
| 101 |
+
'stutter_timestamps': stutter_timestamps,
|
| 102 |
+
'total_stutter_duration': self._calculate_total_duration(stutter_timestamps),
|
| 103 |
+
'stutter_frequency': self._calculate_frequency(stutter_timestamps, audio_file_path),
|
| 104 |
+
'severity': self._determine_severity(transcription_result['mismatch_percentage']),
|
| 105 |
+
'confidence_score': self._calculate_confidence(transcription_result, ctc_loss),
|
| 106 |
+
'analysis_duration_seconds': round(analysis_duration, 2),
|
| 107 |
+
'model_version': 'wav2vec2-base-960h',
|
| 108 |
+
}
|
| 109 |
+
|
| 110 |
+
logger.info(f"✅ Analysis complete in {analysis_duration:.2f}s")
|
| 111 |
+
return result
|
| 112 |
+
|
| 113 |
+
except Exception as e:
|
| 114 |
+
logger.error(f"❌ Analysis failed: {e}")
|
| 115 |
+
raise
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def generate_target_transcript(self, audio_file: str) -> str:
|
| 119 |
+
"""Generate expected transcript using XLSR model"""
|
| 120 |
+
try:
|
| 121 |
+
waveform, sample_rate = torchaudio.load(audio_file)
|
| 122 |
+
|
| 123 |
+
if sample_rate != 16000:
|
| 124 |
+
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
|
| 125 |
+
waveform = resampler(waveform)
|
| 126 |
+
|
| 127 |
+
input_values = self.xlsr_processor(waveform[0], return_tensors="pt").input_values
|
| 128 |
+
|
| 129 |
+
with torch.no_grad():
|
| 130 |
+
logits = self.xlsr_model(input_values).logits
|
| 131 |
+
|
| 132 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 133 |
+
predicted_sentences = self.xlsr_processor.batch_decode(predicted_ids)
|
| 134 |
+
|
| 135 |
+
return predicted_sentences[0]
|
| 136 |
+
|
| 137 |
+
except Exception as e:
|
| 138 |
+
logger.error(f"Target transcript generation failed: {e}")
|
| 139 |
+
raise
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def transcribe_and_detect(self, audio_file: str, proper_transcript: str) -> Dict:
|
| 143 |
+
"""Transcribe audio and detect stuttering patterns"""
|
| 144 |
+
try:
|
| 145 |
+
# Load audio
|
| 146 |
+
input_audio, _ = librosa.load(audio_file, sr=16000)
|
| 147 |
+
|
| 148 |
+
# Tokenize
|
| 149 |
+
input_features = self.base_processor(input_audio, return_tensors="pt").input_values
|
| 150 |
+
|
| 151 |
+
# Get predictions
|
| 152 |
+
with torch.no_grad():
|
| 153 |
+
logits = self.base_model(input_features).logits
|
| 154 |
+
|
| 155 |
+
# Decode
|
| 156 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 157 |
+
transcription = self.base_processor.batch_decode(predicted_ids)[0]
|
| 158 |
+
|
| 159 |
+
# Find stuttered sequences
|
| 160 |
+
stuttered_chars = self.find_sequences_not_in_common(transcription, proper_transcript)
|
| 161 |
+
|
| 162 |
+
# Calculate mismatch percentage
|
| 163 |
+
total_mismatched = sum(len(segment) for segment in stuttered_chars)
|
| 164 |
+
mismatch_percentage = (total_mismatched / len(proper_transcript)) * 100 if len(proper_transcript) > 0 else 0
|
| 165 |
+
mismatch_percentage = min(round(mismatch_percentage), 100)
|
| 166 |
+
|
| 167 |
+
return {
|
| 168 |
+
'transcription': transcription,
|
| 169 |
+
'stuttered_chars': stuttered_chars,
|
| 170 |
+
'mismatch_percentage': mismatch_percentage
|
| 171 |
+
}
|
| 172 |
+
|
| 173 |
+
except Exception as e:
|
| 174 |
+
logger.error(f"Transcription failed: {e}")
|
| 175 |
+
raise
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
def calculate_stutter_timestamps(self, audio_file: str, proper_transcript: str) -> Tuple[float, List[Tuple[float, float]]]:
|
| 179 |
+
"""Calculate CTC loss and find exact stutter timestamps"""
|
| 180 |
+
try:
|
| 181 |
+
# Load waveform
|
| 182 |
+
waveform, sample_rate = torchaudio.load(audio_file)
|
| 183 |
+
|
| 184 |
+
if sample_rate != 16000:
|
| 185 |
+
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
|
| 186 |
+
waveform = resampler(waveform)
|
| 187 |
+
|
| 188 |
+
# Process with base model for CTC loss
|
| 189 |
+
input_values = self.base_processor(waveform[0], return_tensors="pt").input_values
|
| 190 |
+
|
| 191 |
+
with torch.no_grad():
|
| 192 |
+
logits = self.base_model(input_values).logits
|
| 193 |
+
|
| 194 |
+
# Calculate CTC loss
|
| 195 |
+
tokens = self.base_processor.tokenizer(proper_transcript, return_tensors="pt", padding=True, truncation=True)
|
| 196 |
+
target_ids = tokens.input_ids
|
| 197 |
+
|
| 198 |
+
log_probs = torch.log_softmax(logits, dim=-1)
|
| 199 |
+
input_lengths = torch.tensor([log_probs.shape[1]], dtype=torch.long)
|
| 200 |
+
target_lengths = torch.tensor([target_ids.shape[1]], dtype=torch.long)
|
| 201 |
+
|
| 202 |
+
ctc_loss = CTCLoss(blank=self.base_model.config.pad_token_id)
|
| 203 |
+
loss = ctc_loss(log_probs.transpose(0, 1), targets=target_ids,
|
| 204 |
+
input_lengths=input_lengths, target_lengths=target_lengths)
|
| 205 |
+
|
| 206 |
+
# Find stutter timestamps using large model
|
| 207 |
+
input_audio, sample_rate = librosa.load(audio_file, sr=16000)
|
| 208 |
+
|
| 209 |
+
if sample_rate != 16000:
|
| 210 |
+
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
|
| 211 |
+
input_audio = resampler(torch.from_numpy(input_audio)).numpy()
|
| 212 |
+
|
| 213 |
+
input_features = self.large_processor(input_audio, return_tensors='pt').input_values
|
| 214 |
+
|
| 215 |
+
with torch.no_grad():
|
| 216 |
+
logits = self.large_model(input_features).logits
|
| 217 |
+
|
| 218 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 219 |
+
blank_token_id = self.large_model.config.pad_token_id
|
| 220 |
+
|
| 221 |
+
# Extract timestamp ranges
|
| 222 |
+
stuttering_seconds = []
|
| 223 |
+
prev_token = blank_token_id
|
| 224 |
+
frame_shift = 0.02 # 20ms per frame
|
| 225 |
+
audio_duration = len(input_audio) / sample_rate
|
| 226 |
+
|
| 227 |
+
for frame_idx, token_id in enumerate(predicted_ids[0]):
|
| 228 |
+
if token_id != blank_token_id and token_id != prev_token:
|
| 229 |
+
start_frame = frame_idx
|
| 230 |
+
end_frame = frame_idx + token_id.item() - 1
|
| 231 |
+
start_second = min(start_frame * frame_shift, audio_duration)
|
| 232 |
+
end_second = min(end_frame * frame_shift, audio_duration)
|
| 233 |
+
|
| 234 |
+
# Detect prolongations (duration > 0.4s)
|
| 235 |
+
if end_second - start_second > 0.4:
|
| 236 |
+
stuttering_seconds.append((round(start_second, 2), round(end_second, 2)))
|
| 237 |
+
|
| 238 |
+
prev_token = token_id
|
| 239 |
+
|
| 240 |
+
return round(loss.item(), 2), stuttering_seconds
|
| 241 |
+
|
| 242 |
+
except Exception as e:
|
| 243 |
+
logger.error(f"Timestamp calculation failed: {e}")
|
| 244 |
+
return 0.0, []
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def find_max_common_characters(self, transcription1: str, transcript2: str) -> str:
|
| 248 |
+
"""Longest Common Subsequence algorithm"""
|
| 249 |
+
m, n = len(transcription1), len(transcript2)
|
| 250 |
+
lcs_matrix = [[0] * (n + 1) for _ in range(m + 1)]
|
| 251 |
+
|
| 252 |
+
for i in range(1, m + 1):
|
| 253 |
+
for j in range(1, n + 1):
|
| 254 |
+
if transcription1[i - 1] == transcript2[j - 1]:
|
| 255 |
+
lcs_matrix[i][j] = lcs_matrix[i - 1][j - 1] + 1
|
| 256 |
+
else:
|
| 257 |
+
lcs_matrix[i][j] = max(lcs_matrix[i - 1][j], lcs_matrix[i][j - 1])
|
| 258 |
+
|
| 259 |
+
# Backtrack to find LCS
|
| 260 |
+
lcs_characters = []
|
| 261 |
+
i, j = m, n
|
| 262 |
+
while i > 0 and j > 0:
|
| 263 |
+
if transcription1[i - 1] == transcript2[j - 1]:
|
| 264 |
+
lcs_characters.append(transcription1[i - 1])
|
| 265 |
+
i -= 1
|
| 266 |
+
j -= 1
|
| 267 |
+
elif lcs_matrix[i - 1][j] > lcs_matrix[i][j - 1]:
|
| 268 |
+
i -= 1
|
| 269 |
+
else:
|
| 270 |
+
j -= 1
|
| 271 |
+
|
| 272 |
+
lcs_characters.reverse()
|
| 273 |
+
return ''.join(lcs_characters)
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
def find_sequences_not_in_common(self, transcription1: str, proper_transcript: str) -> List[str]:
|
| 277 |
+
"""Find stuttered character sequences"""
|
| 278 |
+
common_characters = self.find_max_common_characters(transcription1, proper_transcript)
|
| 279 |
+
sequences = []
|
| 280 |
+
sequence = ""
|
| 281 |
+
i, j = 0, 0
|
| 282 |
+
|
| 283 |
+
while i < len(transcription1) and j < len(common_characters):
|
| 284 |
+
if transcription1[i] == common_characters[j]:
|
| 285 |
+
if sequence:
|
| 286 |
+
sequences.append(sequence)
|
| 287 |
+
sequence = ""
|
| 288 |
+
i += 1
|
| 289 |
+
j += 1
|
| 290 |
+
else:
|
| 291 |
+
sequence += transcription1[i]
|
| 292 |
+
i += 1
|
| 293 |
+
|
| 294 |
+
if sequence:
|
| 295 |
+
sequences.append(sequence)
|
| 296 |
+
|
| 297 |
+
return sequences
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
def _calculate_total_duration(self, timestamps: List[Tuple[float, float]]) -> float:
|
| 301 |
+
"""Calculate total stuttering duration"""
|
| 302 |
+
return sum(end - start for start, end in timestamps)
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
def _calculate_frequency(self, timestamps: List[Tuple[float, float]], audio_file: str) -> float:
|
| 306 |
+
"""Calculate stutters per minute"""
|
| 307 |
+
try:
|
| 308 |
+
audio_duration = librosa.get_duration(path=audio_file)
|
| 309 |
+
if audio_duration > 0:
|
| 310 |
+
return (len(timestamps) / audio_duration) * 60
|
| 311 |
+
return 0.0
|
| 312 |
+
except:
|
| 313 |
+
return 0.0
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
def _determine_severity(self, mismatch_percentage: float) -> str:
|
| 317 |
+
"""Determine severity level"""
|
| 318 |
+
if mismatch_percentage < 10:
|
| 319 |
+
return 'none'
|
| 320 |
+
elif mismatch_percentage < 25:
|
| 321 |
+
return 'mild'
|
| 322 |
+
elif mismatch_percentage < 50:
|
| 323 |
+
return 'moderate'
|
| 324 |
+
else:
|
| 325 |
+
return 'severe'
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
def _calculate_confidence(self, transcription_result: Dict, ctc_loss: float) -> float:
|
| 329 |
+
"""Calculate confidence score for the analysis"""
|
| 330 |
+
# Lower mismatch and lower CTC loss = higher confidence
|
| 331 |
+
mismatch_factor = 1 - (transcription_result['mismatch_percentage'] / 100)
|
| 332 |
+
loss_factor = max(0, 1 - (ctc_loss / 10)) # Normalize loss
|
| 333 |
+
confidence = (mismatch_factor + loss_factor) / 2
|
| 334 |
+
return round(min(max(confidence, 0.0), 1.0), 2)
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
# diagnosis/ai_engine/model_loader.py
|
| 338 |
+
"""Singleton pattern for model loading"""
|
| 339 |
+
_detector_instance = None
|
| 340 |
+
|
| 341 |
+
def get_stutter_detector():
|
| 342 |
+
"""Get or create singleton StutterDetector instance"""
|
| 343 |
+
global _detector_instance
|
| 344 |
+
if _detector_instance is None:
|
| 345 |
+
_detector_instance = StutterDetector()
|
| 346 |
+
return _detector_instance
|