Spaces:
Runtime error
Runtime error
File size: 12,248 Bytes
73fe9ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from math import isqrt
from typing import Literal, Optional
import torch
from einops import rearrange, repeat
from tqdm import tqdm
from depth_anything_3.specs import Gaussians
from depth_anything_3.utils.camera_trj_helpers import (
interpolate_extrinsics,
interpolate_intrinsics,
render_dolly_zoom_path,
render_stabilization_path,
render_wander_path,
render_wobble_inter_path,
)
from depth_anything_3.utils.geometry import affine_inverse, as_homogeneous, get_fov
from depth_anything_3.utils.logger import logger
try:
from gsplat import rasterization
except ImportError:
logger.warn(
"Dependency `gsplat` is required for rendering 3DGS. "
"Install via: pip install git+https://github.com/nerfstudio-project/"
"gsplat.git@0b4dddf04cb687367602c01196913cde6a743d70"
)
def render_3dgs(
extrinsics: torch.Tensor, # "batch_views 4 4", w2c
intrinsics: torch.Tensor, # "batch_views 3 3", normalized
image_shape: tuple[int, int],
gaussian: Gaussians,
background_color: Optional[torch.Tensor] = None, # "batch_views 3"
use_sh: bool = True,
num_view: int = 1,
color_mode: Literal["RGB+D", "RGB+ED"] = "RGB+D",
**kwargs,
) -> tuple[
torch.Tensor, # "batch_views 3 height width"
torch.Tensor, # "batch_views height width"
]:
# extract gaussian params
gaussian_means = gaussian.means
gaussian_scales = gaussian.scales
gaussian_quats = gaussian.rotations
gaussian_opacities = gaussian.opacities
gaussian_sh_coefficients = gaussian.harmonics
b, _, _ = extrinsics.shape
if background_color is None:
background_color = repeat(torch.tensor([0.0, 0.0, 0.0]), "c -> b c", b=b).to(
gaussian_sh_coefficients
)
if use_sh:
_, _, _, n = gaussian_sh_coefficients.shape
degree = isqrt(n) - 1
shs = rearrange(gaussian_sh_coefficients, "b g xyz n -> b g n xyz").contiguous()
else: # use color
shs = (
gaussian_sh_coefficients.squeeze(-1).sigmoid().contiguous()
) # (b, g, c), normed to (0, 1)
h, w = image_shape
fov_x, fov_y = get_fov(intrinsics).unbind(dim=-1)
tan_fov_x = (0.5 * fov_x).tan()
tan_fov_y = (0.5 * fov_y).tan()
focal_length_x = w / (2 * tan_fov_x)
focal_length_y = h / (2 * tan_fov_y)
view_matrix = extrinsics.float()
all_images = []
all_radii = []
all_depths = []
# render view in a batch based, each batch contains one scene
# assume the Gaussian parameters are originally repeated along the view dim
batch_scene = b // num_view
def index_i_gs_attr(full_attr, idx):
# return rearrange(full_attr, "(b v) ... -> b v ...", v=num_view)[idx, 0]
return full_attr[idx]
for i in range(batch_scene):
K = repeat(
torch.tensor(
[
[0, 0, w / 2.0],
[0, 0, h / 2.0],
[0, 0, 1],
]
),
"i j -> v i j",
v=num_view,
).to(gaussian_means)
K[:, 0, 0] = focal_length_x.reshape(batch_scene, num_view)[i]
K[:, 1, 1] = focal_length_y.reshape(batch_scene, num_view)[i]
i_means = index_i_gs_attr(gaussian_means, i) # [N, 3]
i_scales = index_i_gs_attr(gaussian_scales, i)
i_quats = index_i_gs_attr(gaussian_quats, i)
i_opacities = index_i_gs_attr(gaussian_opacities, i) # [N,]
i_colors = index_i_gs_attr(shs, i) # [N, K, 3]
i_viewmats = rearrange(view_matrix, "(b v) ... -> b v ...", v=num_view)[i] # [v, 4, 4]
i_backgrounds = rearrange(background_color, "(b v) ... -> b v ...", v=num_view)[
i
] # [v, 3]
render_colors, render_alphas, info = rasterization(
means=i_means,
quats=i_quats, # [N, 4]
scales=i_scales, # [N, 3]
opacities=i_opacities,
colors=i_colors,
viewmats=i_viewmats, # [v, 4, 4]
Ks=K, # [v, 3, 3]
backgrounds=i_backgrounds,
render_mode=color_mode,
width=w,
height=h,
packed=False,
sh_degree=degree if use_sh else None,
)
depth = render_colors[..., -1].unbind(dim=0)
image = rearrange(render_colors[..., :3], "v h w c -> v c h w").unbind(dim=0)
radii = info["radii"].unbind(dim=0)
try:
info["means2d"].retain_grad() # [1, N, 2]
except Exception:
pass
all_images.extend(image)
all_depths.extend(depth)
all_radii.extend(radii)
return torch.stack(all_images), torch.stack(all_depths)
def run_renderer_in_chunk_w_trj_mode(
gaussians: Gaussians,
extrinsics: torch.Tensor, # world2cam, "batch view 4 4" | "batch view 3 4"
intrinsics: torch.Tensor, # unnormed intrinsics, "batch view 3 3"
image_shape: tuple[int, int],
chunk_size: Optional[int] = 8,
trj_mode: Literal[
"original",
"smooth",
"interpolate",
"interpolate_smooth",
"wander",
"dolly_zoom",
"extend",
"wobble_inter",
] = "smooth",
input_shape: Optional[tuple[int, int]] = None,
enable_tqdm: Optional[bool] = False,
**kwargs,
) -> tuple[
torch.Tensor, # color, "batch view 3 height width"
torch.Tensor, # depth, "batch view height width"
]:
cam2world = affine_inverse(as_homogeneous(extrinsics))
if input_shape is not None:
in_h, in_w = input_shape
else:
in_h, in_w = image_shape
intr_normed = intrinsics.clone().detach()
intr_normed[..., 0, :] /= in_w
intr_normed[..., 1, :] /= in_h
if extrinsics.shape[1] <= 1:
assert trj_mode in [
"wander",
"dolly_zoom",
], "Please set trj_mode to 'wander' or 'dolly_zoom' when n_views=1"
def _smooth_trj_fn_batch(raw_c2ws, k_size=50):
try:
smooth_c2ws = torch.stack(
[render_stabilization_path(c2w_i, k_size) for c2w_i in raw_c2ws],
dim=0,
)
except Exception as e:
print(f"[DEBUG] Path smoothing failed with error: {e}.")
smooth_c2ws = raw_c2ws
return smooth_c2ws
# get rendered trj
if trj_mode == "original":
tgt_c2w = cam2world
tgt_intr = intr_normed
elif trj_mode == "smooth":
tgt_c2w = _smooth_trj_fn_batch(cam2world)
tgt_intr = intr_normed
elif trj_mode in ["interpolate", "interpolate_smooth", "extend"]:
inter_len = 8
total_len = (cam2world.shape[1] - 1) * inter_len
if total_len > 24 * 18: # no more than 18s
inter_len = max(1, 24 * 10 // (cam2world.shape[1] - 1))
if total_len < 24 * 2: # no less than 2s
inter_len = max(1, 24 * 2 // (cam2world.shape[1] - 1))
if inter_len > 2:
t = torch.linspace(0, 1, inter_len, dtype=torch.float32, device=cam2world.device)
t = (torch.cos(torch.pi * (t + 1)) + 1) / 2
tgt_c2w_b = []
tgt_intr_b = []
for b_idx in range(cam2world.shape[0]):
tgt_c2w = []
tgt_intr = []
for cur_idx in range(cam2world.shape[1] - 1):
tgt_c2w.append(
interpolate_extrinsics(
cam2world[b_idx, cur_idx], cam2world[b_idx, cur_idx + 1], t
)[(0 if cur_idx == 0 else 1) :]
)
tgt_intr.append(
interpolate_intrinsics(
intr_normed[b_idx, cur_idx], intr_normed[b_idx, cur_idx + 1], t
)[(0 if cur_idx == 0 else 1) :]
)
tgt_c2w_b.append(torch.cat(tgt_c2w))
tgt_intr_b.append(torch.cat(tgt_intr))
tgt_c2w = torch.stack(tgt_c2w_b) # b v 4 4
tgt_intr = torch.stack(tgt_intr_b) # b v 3 3
else:
tgt_c2w = cam2world
tgt_intr = intr_normed
if trj_mode in ["interpolate_smooth", "extend"]:
tgt_c2w = _smooth_trj_fn_batch(tgt_c2w)
if trj_mode == "extend":
# apply dolly_zoom and wander in the middle frame
assert cam2world.shape[0] == 1, "extend only supports for batch_size=1 currently."
mid_idx = tgt_c2w.shape[1] // 2
c2w_wd, intr_wd = render_wander_path(
tgt_c2w[0, mid_idx],
tgt_intr[0, mid_idx],
h=in_h,
w=in_w,
num_frames=max(36, min(60, mid_idx // 2)),
max_disp=24.0,
)
c2w_dz, intr_dz = render_dolly_zoom_path(
tgt_c2w[0, mid_idx],
tgt_intr[0, mid_idx],
h=in_h,
w=in_w,
num_frames=max(36, min(60, mid_idx // 2)),
)
tgt_c2w = torch.cat(
[
tgt_c2w[:, :mid_idx],
c2w_wd.unsqueeze(0),
c2w_dz.unsqueeze(0),
tgt_c2w[:, mid_idx:],
],
dim=1,
)
tgt_intr = torch.cat(
[
tgt_intr[:, :mid_idx],
intr_wd.unsqueeze(0),
intr_dz.unsqueeze(0),
tgt_intr[:, mid_idx:],
],
dim=1,
)
elif trj_mode in ["wander", "dolly_zoom"]:
if trj_mode == "wander":
render_fn = render_wander_path
extra_kwargs = {"max_disp": 24.0}
else:
render_fn = render_dolly_zoom_path
extra_kwargs = {"D_focus": 30.0, "max_disp": 2.0}
tgt_c2w = []
tgt_intr = []
for b_idx in range(cam2world.shape[0]):
c2w_i, intr_i = render_fn(
cam2world[b_idx, 0], intr_normed[b_idx, 0], h=in_h, w=in_w, **extra_kwargs
)
tgt_c2w.append(c2w_i)
tgt_intr.append(intr_i)
tgt_c2w = torch.stack(tgt_c2w)
tgt_intr = torch.stack(tgt_intr)
elif trj_mode == "wobble_inter":
tgt_c2w, tgt_intr = render_wobble_inter_path(
cam2world=cam2world,
intr_normed=intr_normed,
inter_len=10,
n_skip=3,
)
else:
raise Exception(f"trj mode [{trj_mode}] is not implemented.")
_, v = tgt_c2w.shape[:2]
tgt_extr = affine_inverse(tgt_c2w)
if chunk_size is None:
chunk_size = v
chunk_size = min(v, chunk_size)
all_colors = []
all_depths = []
for chunk_idx in tqdm(
range(math.ceil(v / chunk_size)),
desc="Rendering novel views",
disable=(not enable_tqdm),
leave=False,
):
s = int(chunk_idx * chunk_size)
e = int((chunk_idx + 1) * chunk_size)
cur_n_view = tgt_extr[:, s:e].shape[1]
color, depth = render_3dgs(
extrinsics=rearrange(tgt_extr[:, s:e], "b v ... -> (b v) ..."), # w2c
intrinsics=rearrange(tgt_intr[:, s:e], "b v ... -> (b v) ..."), # normed
image_shape=image_shape,
gaussian=gaussians,
num_view=cur_n_view,
**kwargs,
)
all_colors.append(rearrange(color, "(b v) ... -> b v ...", v=cur_n_view))
all_depths.append(rearrange(depth, "(b v) ... -> b v ...", v=cur_n_view))
all_colors = torch.cat(all_colors, dim=1)
all_depths = torch.cat(all_depths, dim=1)
return all_colors, all_depths |