Spaces:
Runtime error
Runtime error
AlshimaaGamalAlsaied
commited on
Commit
Β·
8e4ec6f
1
Parent(s):
f4e1b73
commit
Browse files
app.py
CHANGED
|
@@ -1,21 +1,12 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import yolov5
|
| 4 |
-
import subprocess
|
| 5 |
-
import tempfile
|
| 6 |
-
import time
|
| 7 |
-
from pathlib import Path
|
| 8 |
-
import uuid
|
| 9 |
-
import cv2
|
| 10 |
-
import gradio as gr
|
| 11 |
-
|
| 12 |
-
|
| 13 |
|
| 14 |
# Images
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
def
|
| 19 |
image: gr.inputs.Image = None,
|
| 20 |
model_path: gr.inputs.Dropdown = None,
|
| 21 |
image_size: gr.inputs.Slider = 640,
|
|
@@ -33,36 +24,102 @@ def image_fn(
|
|
| 33 |
Returns:
|
| 34 |
Rendered image
|
| 35 |
"""
|
| 36 |
-
|
| 37 |
-
model = yolov5.load(model_path, device="cpu", hf_model=True, trace=False)
|
| 38 |
model.conf = conf_threshold
|
| 39 |
model.iou = iou_threshold
|
| 40 |
results = model([image], size=image_size)
|
| 41 |
return results.render()[0]
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
|
|
|
|
|
|
|
|
|
| 44 |
|
|
|
|
| 45 |
demo_app = gr.Interface(
|
| 46 |
-
fn=
|
| 47 |
-
inputs=
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
"alshimaa/yolo5_epoch100",
|
| 52 |
-
#"kadirnar/yolov7-v0.1",
|
| 53 |
-
],
|
| 54 |
-
default="alshimaa/yolo5_epoch100",
|
| 55 |
-
label="Model",
|
| 56 |
-
)
|
| 57 |
-
#gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size")
|
| 58 |
-
#gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
|
| 59 |
-
#gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
|
| 60 |
-
],
|
| 61 |
-
outputs=gr.outputs.Image(type="filepath", label="Output Image"),
|
| 62 |
-
title="Object Detector: Identify People Without Mask",
|
| 63 |
-
examples=[['img1.png', 'alshimaa/yolo5_epoch100', 640, 0.25, 0.45], ['img2.png', 'alshimaa/yolo5_epoch100', 640, 0.25, 0.45], ['img3.png', 'alshimaa/yolo5_epoch100', 640, 0.25, 0.45]],
|
| 64 |
cache_examples=True,
|
| 65 |
live=True,
|
| 66 |
theme='huggingface',
|
| 67 |
)
|
| 68 |
demo_app.launch(debug=True, enable_queue=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import yolov5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
# Images
|
| 6 |
+
torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
|
| 7 |
+
torch.hub.download_url_to_file('https://raw.githubusercontent.com/WongKinYiu/yolov7/main/inference/images/image3.jpg', 'image3.jpg')
|
| 8 |
+
|
| 9 |
+
def yolov5_inference(
|
| 10 |
image: gr.inputs.Image = None,
|
| 11 |
model_path: gr.inputs.Dropdown = None,
|
| 12 |
image_size: gr.inputs.Slider = 640,
|
|
|
|
| 24 |
Returns:
|
| 25 |
Rendered image
|
| 26 |
"""
|
| 27 |
+
model = yolov5.load(model_path, device="cpu")
|
|
|
|
| 28 |
model.conf = conf_threshold
|
| 29 |
model.iou = iou_threshold
|
| 30 |
results = model([image], size=image_size)
|
| 31 |
return results.render()[0]
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
inputs = [
|
| 35 |
+
gr.inputs.Image(type="pil", label="Input Image"),
|
| 36 |
+
gr.inputs.Dropdown(["yolov5s.pt", "alshimaa/yolo5_epoch100"], label="Model"),
|
| 37 |
+
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
|
| 38 |
+
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
|
| 39 |
+
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
|
| 40 |
+
]
|
| 41 |
|
| 42 |
+
outputs = gr.outputs.Image(type="filepath", label="Output Image")
|
| 43 |
+
title = "YOLOv5"
|
| 44 |
+
description = "YOLOv5 is a family of object detection models pretrained on COCO dataset. This model is a pip implementation of the original YOLOv5 model."
|
| 45 |
|
| 46 |
+
examples = [['zidane.jpg', 'yolov5s.pt', 640, 0.25, 0.45], ['image3.jpg', 'yolov5s.pt', 640, 0.25, 0.45]]
|
| 47 |
demo_app = gr.Interface(
|
| 48 |
+
fn=yolov5_inference,
|
| 49 |
+
inputs=inputs,
|
| 50 |
+
outputs=outputs,
|
| 51 |
+
title=title,
|
| 52 |
+
examples=examples,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
cache_examples=True,
|
| 54 |
live=True,
|
| 55 |
theme='huggingface',
|
| 56 |
)
|
| 57 |
demo_app.launch(debug=True, enable_queue=True)
|
| 58 |
+
# import gradio as gr
|
| 59 |
+
# import torch
|
| 60 |
+
# import yolov5
|
| 61 |
+
# import subprocess
|
| 62 |
+
# import tempfile
|
| 63 |
+
# import time
|
| 64 |
+
# from pathlib import Path
|
| 65 |
+
# import uuid
|
| 66 |
+
# import cv2
|
| 67 |
+
# import gradio as gr
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# # Images
|
| 72 |
+
# #torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
|
| 73 |
+
# #torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')
|
| 74 |
+
|
| 75 |
+
# def image_fn(
|
| 76 |
+
# image: gr.inputs.Image = None,
|
| 77 |
+
# model_path: gr.inputs.Dropdown = None,
|
| 78 |
+
# image_size: gr.inputs.Slider = 640,
|
| 79 |
+
# conf_threshold: gr.inputs.Slider = 0.25,
|
| 80 |
+
# iou_threshold: gr.inputs.Slider = 0.45,
|
| 81 |
+
# ):
|
| 82 |
+
# """
|
| 83 |
+
# YOLOv5 inference function
|
| 84 |
+
# Args:
|
| 85 |
+
# image: Input image
|
| 86 |
+
# model_path: Path to the model
|
| 87 |
+
# image_size: Image size
|
| 88 |
+
# conf_threshold: Confidence threshold
|
| 89 |
+
# iou_threshold: IOU threshold
|
| 90 |
+
# Returns:
|
| 91 |
+
# Rendered image
|
| 92 |
+
# """
|
| 93 |
+
|
| 94 |
+
# model = yolov5.load(model_path, device="cpu", hf_model=True, trace=False)
|
| 95 |
+
# model.conf = conf_threshold
|
| 96 |
+
# model.iou = iou_threshold
|
| 97 |
+
# results = model([image], size=image_size)
|
| 98 |
+
# return results.render()[0]
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
# demo_app = gr.Interface(
|
| 103 |
+
# fn=image_fn,
|
| 104 |
+
# inputs=[
|
| 105 |
+
# gr.inputs.Image(type="pil", label="Input Image"),
|
| 106 |
+
# gr.inputs.Dropdown(
|
| 107 |
+
# choices=[
|
| 108 |
+
# "alshimaa/yolo5_epoch100",
|
| 109 |
+
# #"kadirnar/yolov7-v0.1",
|
| 110 |
+
# ],
|
| 111 |
+
# default="alshimaa/yolo5_epoch100",
|
| 112 |
+
# label="Model",
|
| 113 |
+
# )
|
| 114 |
+
# #gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size")
|
| 115 |
+
# #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
|
| 116 |
+
# #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
|
| 117 |
+
# ],
|
| 118 |
+
# outputs=gr.outputs.Image(type="filepath", label="Output Image"),
|
| 119 |
+
# title="Object Detector: Identify People Without Mask",
|
| 120 |
+
# examples=[['img1.png', 'alshimaa/yolo5_epoch100', 640, 0.25, 0.45], ['img2.png', 'alshimaa/yolo5_epoch100', 640, 0.25, 0.45], ['img3.png', 'alshimaa/yolo5_epoch100', 640, 0.25, 0.45]],
|
| 121 |
+
# cache_examples=True,
|
| 122 |
+
# live=True,
|
| 123 |
+
# theme='huggingface',
|
| 124 |
+
# )
|
| 125 |
+
# demo_app.launch(debug=True, enable_queue=True)
|