ShaswatSingh
commited on
Upload 4 files
Browse files- .gitattributes +1 -0
- CSV_rag_.py +449 -0
- Readme.md +14 -0
- hotel_bookings.csv +3 -0
- requirements.txt +9 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
hotel_bookings.csv filter=lfs diff=lfs merge=lfs -text
|
CSV_rag_.py
ADDED
|
@@ -0,0 +1,449 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import os
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import io
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import base64
|
| 8 |
+
import re
|
| 9 |
+
import numpy as np
|
| 10 |
+
from llama_index.llms.groq import Groq
|
| 11 |
+
from llama_index.core.query_pipeline import (
|
| 12 |
+
QueryPipeline as QP,
|
| 13 |
+
Link,
|
| 14 |
+
InputComponent,
|
| 15 |
+
)
|
| 16 |
+
from llama_index.experimental.query_engine.pandas import (
|
| 17 |
+
PandasInstructionParser,
|
| 18 |
+
)
|
| 19 |
+
from llama_index.core import PromptTemplate
|
| 20 |
+
|
| 21 |
+
# Example datasets
|
| 22 |
+
EXAMPLE_DATASETS = {
|
| 23 |
+
"Hotel Bookings": "hotel_bookings.csv",
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
def load_dataframe(file_path):
|
| 27 |
+
try:
|
| 28 |
+
if isinstance(file_path, str):
|
| 29 |
+
# If it's a URL or file path
|
| 30 |
+
df = pd.read_csv(file_path)
|
| 31 |
+
else:
|
| 32 |
+
# If it's an uploaded file
|
| 33 |
+
df = pd.read_csv(file_path.name)
|
| 34 |
+
return df, f"Successfully loaded dataset with {df.shape[0]} rows and {df.shape[1]} columns."
|
| 35 |
+
except Exception as e:
|
| 36 |
+
return None, f"Error loading dataset: {str(e)}"
|
| 37 |
+
|
| 38 |
+
def create_query_pipeline(df, api_key, model="llama-3.3-70b-versatile"):
|
| 39 |
+
# Create Groq LLM with the provided API key
|
| 40 |
+
try:
|
| 41 |
+
llm = Groq(model=model, api_key=api_key)
|
| 42 |
+
except Exception as e:
|
| 43 |
+
return None, f"Error initializing Groq LLM: {str(e)}"
|
| 44 |
+
|
| 45 |
+
instruction_str = (
|
| 46 |
+
"1. Convert the query to executable Python code using Pandas.\n"
|
| 47 |
+
"2. The final line of code should be a Python expression that can be called with the `eval()` function.\n"
|
| 48 |
+
"3. The code should represent a solution to the query.\n"
|
| 49 |
+
"4. PRINT ONLY THE EXPRESSION.\n"
|
| 50 |
+
"5. Do not quote the expression.\n"
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
pandas_prompt_str = (
|
| 54 |
+
"You are working with a pandas dataframe in Python.\n"
|
| 55 |
+
"The name of the dataframe is `df`.\n"
|
| 56 |
+
"This is the result of `print(df.head())`:\n"
|
| 57 |
+
"{df_str}\n\n"
|
| 58 |
+
"Follow these instructions:\n"
|
| 59 |
+
"{instruction_str}\n"
|
| 60 |
+
"Query: {query_str}\n\n"
|
| 61 |
+
"Expression:"
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
response_synthesis_prompt_str = (
|
| 65 |
+
"Given an input question, synthesize a response from the query results.\n"
|
| 66 |
+
"Query: {query_str}\n\n"
|
| 67 |
+
"Pandas Instructions (optional):\n{pandas_instructions}\n\n"
|
| 68 |
+
"Pandas Output: {pandas_output}\n\n"
|
| 69 |
+
"Response: "
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
pandas_prompt = PromptTemplate(pandas_prompt_str).partial_format(
|
| 73 |
+
instruction_str=instruction_str, df_str=df.head(5)
|
| 74 |
+
)
|
| 75 |
+
pandas_output_parser = PandasInstructionParser(df)
|
| 76 |
+
response_synthesis_prompt = PromptTemplate(response_synthesis_prompt_str)
|
| 77 |
+
|
| 78 |
+
qp = QP(
|
| 79 |
+
modules={
|
| 80 |
+
"input": InputComponent(),
|
| 81 |
+
"pandas_prompt": pandas_prompt,
|
| 82 |
+
"llm1": llm,
|
| 83 |
+
"pandas_output_parser": pandas_output_parser,
|
| 84 |
+
"response_synthesis_prompt": response_synthesis_prompt,
|
| 85 |
+
"llm2": llm,
|
| 86 |
+
},
|
| 87 |
+
verbose=True,
|
| 88 |
+
)
|
| 89 |
+
qp.add_chain(["input", "pandas_prompt", "llm1", "pandas_output_parser"])
|
| 90 |
+
qp.add_links(
|
| 91 |
+
[
|
| 92 |
+
Link("input", "response_synthesis_prompt", dest_key="query_str"),
|
| 93 |
+
Link(
|
| 94 |
+
"llm1", "response_synthesis_prompt", dest_key="pandas_instructions"
|
| 95 |
+
),
|
| 96 |
+
Link(
|
| 97 |
+
"pandas_output_parser",
|
| 98 |
+
"response_synthesis_prompt",
|
| 99 |
+
dest_key="pandas_output",
|
| 100 |
+
),
|
| 101 |
+
]
|
| 102 |
+
)
|
| 103 |
+
qp.add_link("response_synthesis_prompt", "llm2")
|
| 104 |
+
|
| 105 |
+
return qp, "Query pipeline created successfully!"
|
| 106 |
+
|
| 107 |
+
def enhance_visualization(df, query):
|
| 108 |
+
"""
|
| 109 |
+
Create an enhanced visualization based on the dataframe and query
|
| 110 |
+
This function attempts to create a better visualization with proper labels and formatting
|
| 111 |
+
"""
|
| 112 |
+
try:
|
| 113 |
+
# Close any existing figures to avoid conflicts
|
| 114 |
+
plt.close('all')
|
| 115 |
+
|
| 116 |
+
# Create a new figure with larger size for better quality
|
| 117 |
+
plt.figure(figsize=(12, 8), dpi=100)
|
| 118 |
+
|
| 119 |
+
# Time-related visualization handling (for bookings over time, trends, etc.)
|
| 120 |
+
if any(term in query.lower() for term in ['trend', 'time', 'year', 'month', 'booking', 'reservation']):
|
| 121 |
+
# Try to detect date columns
|
| 122 |
+
date_cols = [col for col in df.columns if any(term in col.lower() for term in
|
| 123 |
+
['date', 'year', 'month', 'time', 'arrival', 'reservation'])]
|
| 124 |
+
|
| 125 |
+
if 'arrival_date_year' in df.columns and 'arrival_date_month' in df.columns:
|
| 126 |
+
try:
|
| 127 |
+
# Create a year-month based visualization
|
| 128 |
+
# Convert month names to numbers for sorting
|
| 129 |
+
month_order = {
|
| 130 |
+
'January': 1, 'February': 2, 'March': 3, 'April': 4, 'May': 5, 'June': 6,
|
| 131 |
+
'July': 7, 'August': 8, 'September': 9, 'October': 10, 'November': 11, 'December': 12
|
| 132 |
+
}
|
| 133 |
+
|
| 134 |
+
# Count bookings by year and month
|
| 135 |
+
booking_counts = df.groupby(['arrival_date_year', 'arrival_date_month']).size().reset_index(name='count')
|
| 136 |
+
|
| 137 |
+
# Add month order for sorting
|
| 138 |
+
booking_counts['month_order'] = booking_counts['arrival_date_month'].map(month_order)
|
| 139 |
+
booking_counts = booking_counts.sort_values(['arrival_date_year', 'month_order'])
|
| 140 |
+
|
| 141 |
+
# Create pivot table for visualization
|
| 142 |
+
pivot_data = booking_counts.pivot(index='arrival_date_year', columns='arrival_date_month', values='count')
|
| 143 |
+
|
| 144 |
+
# Reorder columns by month
|
| 145 |
+
months = sorted(booking_counts['arrival_date_month'].unique(), key=lambda x: month_order.get(x, 13))
|
| 146 |
+
|
| 147 |
+
if len(months) > 0: # Check if the months list is not empty
|
| 148 |
+
pivot_data = pivot_data[months]
|
| 149 |
+
|
| 150 |
+
# Plot the data
|
| 151 |
+
ax = pivot_data.plot(kind='bar', figsize=(14, 8), width=0.8)
|
| 152 |
+
|
| 153 |
+
# Enhance the plot
|
| 154 |
+
plt.title('Bookings by Month and Year', fontsize=16)
|
| 155 |
+
plt.xlabel('Year', fontsize=14)
|
| 156 |
+
plt.ylabel('Number of Bookings', fontsize=14)
|
| 157 |
+
plt.legend(title='Month', fontsize=12)
|
| 158 |
+
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
| 159 |
+
plt.tight_layout()
|
| 160 |
+
|
| 161 |
+
# Add value labels on top of bars
|
| 162 |
+
for container in ax.containers:
|
| 163 |
+
ax.bar_label(container, fontsize=9, fmt='%d')
|
| 164 |
+
else:
|
| 165 |
+
return None # No months data found
|
| 166 |
+
except Exception as e:
|
| 167 |
+
print(f"Error in time visualization: {str(e)}")
|
| 168 |
+
return None
|
| 169 |
+
|
| 170 |
+
elif len(date_cols) > 0 and any(col in df.columns for col in date_cols):
|
| 171 |
+
try:
|
| 172 |
+
# Handle other time-based visualizations
|
| 173 |
+
date_col = [col for col in date_cols if col in df.columns][0]
|
| 174 |
+
df_count = df.groupby(date_col).size().reset_index(name='count')
|
| 175 |
+
|
| 176 |
+
plt.bar(df_count[date_col], df_count['count'], color='steelblue')
|
| 177 |
+
plt.title(f'Distribution by {date_col}', fontsize=16)
|
| 178 |
+
plt.xlabel(date_col, fontsize=14)
|
| 179 |
+
plt.ylabel('Count', fontsize=14)
|
| 180 |
+
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
| 181 |
+
plt.xticks(rotation=45)
|
| 182 |
+
plt.tight_layout()
|
| 183 |
+
except Exception as e:
|
| 184 |
+
print(f"Error in date column visualization: {str(e)}")
|
| 185 |
+
return None
|
| 186 |
+
|
| 187 |
+
else:
|
| 188 |
+
# Default time visualization if we can't find specific columns
|
| 189 |
+
return None # Let matplotlib handle it
|
| 190 |
+
|
| 191 |
+
# Distribution visualization (for questions about distributions)
|
| 192 |
+
elif any(term in query.lower() for term in ['distribution', 'histogram', 'spread']):
|
| 193 |
+
try:
|
| 194 |
+
numeric_cols = df.select_dtypes(include=['number']).columns.tolist()
|
| 195 |
+
if len(numeric_cols) > 0:
|
| 196 |
+
# Choose a relevant column based on query or the first numeric column
|
| 197 |
+
target_col = None
|
| 198 |
+
for col in numeric_cols:
|
| 199 |
+
if col.lower() in query.lower():
|
| 200 |
+
target_col = col
|
| 201 |
+
break
|
| 202 |
+
|
| 203 |
+
if target_col is None and numeric_cols:
|
| 204 |
+
target_col = numeric_cols[0]
|
| 205 |
+
|
| 206 |
+
if target_col:
|
| 207 |
+
# Create histogram
|
| 208 |
+
plt.hist(df[target_col].dropna(), bins=30, color='steelblue', edgecolor='black', alpha=0.7)
|
| 209 |
+
plt.title(f'Distribution of {target_col}', fontsize=16)
|
| 210 |
+
plt.xlabel(target_col, fontsize=14)
|
| 211 |
+
plt.ylabel('Frequency', fontsize=14)
|
| 212 |
+
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
| 213 |
+
plt.tight_layout()
|
| 214 |
+
else:
|
| 215 |
+
return None # Let matplotlib handle it
|
| 216 |
+
else:
|
| 217 |
+
return None # Let matplotlib handle it
|
| 218 |
+
except Exception as e:
|
| 219 |
+
print(f"Error in distribution visualization: {str(e)}")
|
| 220 |
+
return None
|
| 221 |
+
|
| 222 |
+
# Comparison visualization (for questions comparing categories)
|
| 223 |
+
elif any(term in query.lower() for term in ['compare', 'comparison', 'versus', 'vs', 'most', 'least']):
|
| 224 |
+
try:
|
| 225 |
+
categorical_cols = df.select_dtypes(include=['object']).columns.tolist()
|
| 226 |
+
if len(categorical_cols) > 0:
|
| 227 |
+
# Choose a relevant column based on query or the first categorical column
|
| 228 |
+
target_col = None
|
| 229 |
+
for col in categorical_cols:
|
| 230 |
+
if col.lower() in query.lower():
|
| 231 |
+
target_col = col
|
| 232 |
+
break
|
| 233 |
+
|
| 234 |
+
if target_col is None and categorical_cols:
|
| 235 |
+
target_col = categorical_cols[0]
|
| 236 |
+
|
| 237 |
+
if target_col:
|
| 238 |
+
# Get top categories by count
|
| 239 |
+
top_categories = df[target_col].value_counts().nlargest(10)
|
| 240 |
+
|
| 241 |
+
# Create bar chart
|
| 242 |
+
plt.bar(top_categories.index, top_categories.values, color='steelblue')
|
| 243 |
+
plt.title(f'Top Categories by {target_col}', fontsize=16)
|
| 244 |
+
plt.xlabel(target_col, fontsize=14)
|
| 245 |
+
plt.ylabel('Count', fontsize=14)
|
| 246 |
+
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
| 247 |
+
plt.xticks(rotation=45, ha='right')
|
| 248 |
+
plt.tight_layout()
|
| 249 |
+
else:
|
| 250 |
+
return None # Let matplotlib handle it
|
| 251 |
+
else:
|
| 252 |
+
return None # Let matplotlib handle it
|
| 253 |
+
except Exception as e:
|
| 254 |
+
print(f"Error in comparison visualization: {str(e)}")
|
| 255 |
+
return None
|
| 256 |
+
else:
|
| 257 |
+
# For other types of queries, let the default matplotlib handle it
|
| 258 |
+
return None
|
| 259 |
+
|
| 260 |
+
# Save figure to buffer
|
| 261 |
+
buf = io.BytesIO()
|
| 262 |
+
plt.savefig(buf, format='png')
|
| 263 |
+
buf.seek(0)
|
| 264 |
+
|
| 265 |
+
# Create an image from the buffer
|
| 266 |
+
img = Image.open(buf)
|
| 267 |
+
plt.close('all') # Close the figure to free memory
|
| 268 |
+
|
| 269 |
+
return img
|
| 270 |
+
except Exception as e:
|
| 271 |
+
print(f"Error in enhance_visualization: {str(e)}")
|
| 272 |
+
plt.close('all') # Make sure to close any figures in case of error
|
| 273 |
+
return None
|
| 274 |
+
|
| 275 |
+
def process_query(query, api_key, df, model_choice):
|
| 276 |
+
if df is None:
|
| 277 |
+
return "Please load a dataset first.", None
|
| 278 |
+
|
| 279 |
+
if not api_key:
|
| 280 |
+
return "Please provide your Groq API key.", None
|
| 281 |
+
|
| 282 |
+
try:
|
| 283 |
+
# First, try to create an enhanced visualization based on the query
|
| 284 |
+
enhanced_img = enhance_visualization(df, query)
|
| 285 |
+
|
| 286 |
+
# Create and run the query pipeline
|
| 287 |
+
pipeline, message = create_query_pipeline(df, api_key, model_choice)
|
| 288 |
+
if pipeline is None:
|
| 289 |
+
return message, None
|
| 290 |
+
|
| 291 |
+
# Run the query
|
| 292 |
+
response = pipeline.run(query_str=query)
|
| 293 |
+
|
| 294 |
+
# If we already have an enhanced visualization, use it
|
| 295 |
+
if enhanced_img is not None:
|
| 296 |
+
return response.message.content, enhanced_img
|
| 297 |
+
|
| 298 |
+
# Otherwise check if any matplotlib figures were created by the query
|
| 299 |
+
figures = plt.get_fignums()
|
| 300 |
+
|
| 301 |
+
if figures:
|
| 302 |
+
try:
|
| 303 |
+
# Improve any existing figure if possible
|
| 304 |
+
fig = plt.figure(figures[0])
|
| 305 |
+
axes = fig.axes
|
| 306 |
+
|
| 307 |
+
if axes and len(axes) > 0: # Make sure axes list isn't empty
|
| 308 |
+
ax = axes[0]
|
| 309 |
+
# Add grid lines
|
| 310 |
+
ax.grid(axis='y', linestyle='--', alpha=0.7)
|
| 311 |
+
# Enhance title and labels if they exist
|
| 312 |
+
if ax.get_title():
|
| 313 |
+
ax.set_title(ax.get_title(), fontsize=16)
|
| 314 |
+
if ax.get_xlabel():
|
| 315 |
+
ax.set_xlabel(ax.get_xlabel(), fontsize=14)
|
| 316 |
+
if ax.get_ylabel():
|
| 317 |
+
ax.set_ylabel(ax.get_ylabel(), fontsize=14)
|
| 318 |
+
# Handle legend if it exists
|
| 319 |
+
if ax.get_legend():
|
| 320 |
+
ax.legend(fontsize=12)
|
| 321 |
+
fig.tight_layout()
|
| 322 |
+
|
| 323 |
+
# Save the figure to a bytes buffer
|
| 324 |
+
buf = io.BytesIO()
|
| 325 |
+
plt.savefig(buf, format='png', dpi=100)
|
| 326 |
+
buf.seek(0)
|
| 327 |
+
|
| 328 |
+
# Create an image from the buffer
|
| 329 |
+
img = Image.open(buf)
|
| 330 |
+
plt.close('all') # Close the figure to free memory
|
| 331 |
+
|
| 332 |
+
return response.message.content, img
|
| 333 |
+
except Exception as e:
|
| 334 |
+
plt.close('all')
|
| 335 |
+
# Log the error but continue without crashing
|
| 336 |
+
print(f"Visualization error: {str(e)}")
|
| 337 |
+
return response.message.content, None
|
| 338 |
+
else:
|
| 339 |
+
# No visualization was generated
|
| 340 |
+
return response.message.content, None
|
| 341 |
+
|
| 342 |
+
except Exception as e:
|
| 343 |
+
plt.close('all') # Make sure to close any figures in case of error
|
| 344 |
+
return f"Error processing query: {str(e)}", None
|
| 345 |
+
|
| 346 |
+
def handle_example_selection(example_name):
|
| 347 |
+
if example_name in EXAMPLE_DATASETS:
|
| 348 |
+
file_path = EXAMPLE_DATASETS[example_name]
|
| 349 |
+
df, message = load_dataframe(file_path)
|
| 350 |
+
return df, message, gr.update(value=f"Dataset preview:\n{df.head().to_string()}")
|
| 351 |
+
return None, "Please select a valid example dataset.", gr.update(value="")
|
| 352 |
+
|
| 353 |
+
def handle_file_upload(file):
|
| 354 |
+
if file is not None:
|
| 355 |
+
df, message = load_dataframe(file)
|
| 356 |
+
return df, message, gr.update(value=f"Dataset preview:\n{df.head().to_string()}")
|
| 357 |
+
return None, "No file uploaded.", gr.update(value="")
|
| 358 |
+
|
| 359 |
+
# Create Gradio interface
|
| 360 |
+
with gr.Blocks(title="Pandas Data Analysis with Groq LLM") as app:
|
| 361 |
+
gr.Markdown("# Pandas Data Analysis with Groq LLM")
|
| 362 |
+
gr.Markdown("Upload your CSV data or choose an example dataset, then ask questions about it.")
|
| 363 |
+
|
| 364 |
+
# State variables
|
| 365 |
+
df_state = gr.State(value=None)
|
| 366 |
+
|
| 367 |
+
with gr.Row():
|
| 368 |
+
with gr.Column(scale=1):
|
| 369 |
+
with gr.Group():
|
| 370 |
+
gr.Markdown("### Data Selection")
|
| 371 |
+
with gr.Tab("Upload Data"):
|
| 372 |
+
file_input = gr.File(label="Upload CSV File", file_types=[".csv"])
|
| 373 |
+
upload_button = gr.Button("Load Uploaded Data")
|
| 374 |
+
|
| 375 |
+
with gr.Tab("Example Datasets"):
|
| 376 |
+
example_dropdown = gr.Dropdown(
|
| 377 |
+
choices=list(EXAMPLE_DATASETS.keys()),
|
| 378 |
+
label="Select Example Dataset"
|
| 379 |
+
)
|
| 380 |
+
example_button = gr.Button("Load Example Dataset")
|
| 381 |
+
|
| 382 |
+
data_status = gr.Textbox(label="Data Loading Status", interactive=False)
|
| 383 |
+
|
| 384 |
+
with gr.Group():
|
| 385 |
+
gr.Markdown("### Groq API Configuration")
|
| 386 |
+
api_key = gr.Textbox(
|
| 387 |
+
label="Enter your Groq API Key",
|
| 388 |
+
placeholder="gsk_...",
|
| 389 |
+
type="password"
|
| 390 |
+
)
|
| 391 |
+
model_choice = gr.Dropdown(
|
| 392 |
+
choices=["llama-3.3-70b-versatile", "mixtral-8x7b-32768", "gemma-7b-it"],
|
| 393 |
+
value="llama-3.3-70b-versatile",
|
| 394 |
+
label="Select Groq Model"
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
with gr.Column(scale=1):
|
| 398 |
+
data_preview = gr.Textbox(label="Dataset Preview", interactive=False, lines=10)
|
| 399 |
+
query_input = gr.Textbox(
|
| 400 |
+
label="Ask a question about your data",
|
| 401 |
+
placeholder="e.g., What is the trend of monthly bookings over time?",
|
| 402 |
+
lines=2
|
| 403 |
+
)
|
| 404 |
+
query_button = gr.Button("Submit Query")
|
| 405 |
+
|
| 406 |
+
# Output display with tabs for text and visualization
|
| 407 |
+
with gr.Tabs():
|
| 408 |
+
with gr.TabItem("Text Response"):
|
| 409 |
+
response_output = gr.Textbox(label="Response", interactive=False, lines=10)
|
| 410 |
+
with gr.TabItem("Visualization"):
|
| 411 |
+
image_output = gr.Image(label="Data Visualization", interactive=False)
|
| 412 |
+
|
| 413 |
+
# Handle events
|
| 414 |
+
upload_button.click(
|
| 415 |
+
handle_file_upload,
|
| 416 |
+
inputs=[file_input],
|
| 417 |
+
outputs=[df_state, data_status, data_preview]
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
+
example_button.click(
|
| 421 |
+
handle_example_selection,
|
| 422 |
+
inputs=[example_dropdown],
|
| 423 |
+
outputs=[df_state, data_status, data_preview]
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
query_button.click(
|
| 427 |
+
process_query,
|
| 428 |
+
inputs=[query_input, api_key, df_state, model_choice],
|
| 429 |
+
outputs=[response_output, image_output]
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
gr.Markdown("""
|
| 433 |
+
### Instructions
|
| 434 |
+
1. Upload your CSV file or select an example dataset
|
| 435 |
+
2. Enter your Groq API key (get one at [https://console.groq.com](https://console.groq.com))
|
| 436 |
+
3. Ask questions about your data in natural language
|
| 437 |
+
4. Get AI-powered insights and visualizations based on your data
|
| 438 |
+
|
| 439 |
+
### Example Questions
|
| 440 |
+
- What is the trend of monthly bookings over time?
|
| 441 |
+
- What's the distribution of stay duration?
|
| 442 |
+
- Which country has the most bookings?
|
| 443 |
+
- Is there a correlation between lead time and cancellations?
|
| 444 |
+
- Show me bookings by month and year
|
| 445 |
+
""")
|
| 446 |
+
|
| 447 |
+
# Launch the app
|
| 448 |
+
if __name__ == "__main__":
|
| 449 |
+
app.launch()
|
Readme.md
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: CSVision
|
| 3 |
+
emoji: 🚀
|
| 4 |
+
colorFrom: white
|
| 5 |
+
colorTo: green
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.23.3
|
| 8 |
+
app_file: CSV_rag_.py
|
| 9 |
+
pinned: false
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# My Hugging Face Space
|
| 13 |
+
|
| 14 |
+
Welcome to my Hugging Face Space! 🎉
|
hotel_bookings.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7c2ae42a7353905ea136e5c2287f17c92c5435826598bfbb8491c6f0c7b1fc06
|
| 3 |
+
size 16855599
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
pandas
|
| 3 |
+
numpy
|
| 4 |
+
matplotlib
|
| 5 |
+
pillow
|
| 6 |
+
base64
|
| 7 |
+
llama-index-llms-groq
|
| 8 |
+
llama-index-experimental
|
| 9 |
+
llama-index
|