Spaces:
Running
Running
| import gradio as gr | |
| import numpy as np | |
| import cv2 | |
| def create_dot_effect(image, dot_size=10, spacing=2, invert=False): | |
| # Convert to grayscale if image is color | |
| if len(image.shape) == 3: | |
| gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) | |
| else: | |
| gray = image | |
| # Apply adaptive thresholding to improve contrast | |
| gray = cv2.adaptiveThreshold( | |
| gray, | |
| 255, | |
| cv2.ADAPTIVE_THRESH_GAUSSIAN_C, | |
| cv2.THRESH_BINARY, | |
| 25, # Block size | |
| 5 # Constant subtracted from mean | |
| ) | |
| # Create a blank canvas with white background if inverted | |
| height, width = gray.shape | |
| canvas = np.zeros_like(gray) if not invert else np.full_like(gray, 255) | |
| # Calculate number of dots based on spacing | |
| y_dots = range(0, height, dot_size + spacing) | |
| x_dots = range(0, width, dot_size + spacing) | |
| # Create dots based on brightness | |
| dot_color = 255 if not invert else 0 | |
| for y in y_dots: | |
| for x in x_dots: | |
| # Get the average brightness of the region | |
| region = gray[y:min(y+dot_size, height), x:min(x+dot_size, width)] | |
| if region.size > 0: | |
| brightness = np.mean(region) | |
| # Dynamic dot sizing based on brightness | |
| relative_brightness = brightness / 255.0 | |
| if invert: | |
| relative_brightness = 1 - relative_brightness | |
| # Draw circle with size proportional to brightness | |
| radius = int((dot_size/2) * relative_brightness) | |
| if radius > 0: | |
| cv2.circle(canvas, | |
| (x + dot_size//2, y + dot_size//2), | |
| radius, | |
| (dot_color), | |
| -1) | |
| return canvas | |
| def process_video(video_path, dot_size=10, spacing=2, invert=False): | |
| # Read the video | |
| cap = cv2.VideoCapture(video_path) | |
| if not cap.isOpened(): | |
| return None | |
| # Get video properties | |
| fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
| frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
| frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
| # Calculate target dimensions (max 720p for performance) | |
| max_height = 720 | |
| if frame_height > max_height: | |
| scale = max_height / frame_height | |
| frame_width = int(frame_width * scale) | |
| frame_height = max_height | |
| # Create temporary output file | |
| output_path = "temp_output.mp4" | |
| fourcc = cv2.VideoWriter_fourcc(*'avc1') | |
| out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height), False) | |
| try: | |
| while cap.isOpened(): | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| # Resize frame if needed | |
| if frame.shape[0] > max_height: | |
| frame = cv2.resize(frame, (frame_width, frame_height)) | |
| # Convert BGR to RGB for processing | |
| frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
| # Apply dot effect | |
| dotted_frame = create_dot_effect(frame_rgb, dot_size, spacing, invert) | |
| # Write the frame | |
| out.write(dotted_frame) | |
| finally: | |
| # Ensure resources are released | |
| cap.release() | |
| out.release() | |
| return output_path | |
| # Create Gradio interface | |
| with gr.Blocks(title="ChatGPT Ad Maker") as iface: | |
| gr.Markdown("# ChatGPT Ad Maker") | |
| gr.Markdown("Convert your image or video into a dotted pattern. Adjust dot size and spacing using the sliders.") | |
| with gr.Tab("Image"): | |
| image_input = gr.Image(label="Input Image") | |
| with gr.Row(): | |
| img_dot_size = gr.Slider(minimum=2, maximum=20, value=10, step=1, label="Dot Size") | |
| img_spacing = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Dot Spacing") | |
| image_output = gr.Image(label="Dotted Output") | |
| image_button = gr.Button("Process Image") | |
| image_button.click( | |
| fn=create_dot_effect, | |
| inputs=[image_input, img_dot_size, img_spacing], | |
| outputs=image_output | |
| ) | |
| with gr.Tab("Video"): | |
| video_input = gr.Video(label="Input Video") | |
| with gr.Row(): | |
| vid_dot_size = gr.Slider(minimum=2, maximum=20, value=10, step=1, label="Dot Size") | |
| vid_spacing = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Dot Spacing") | |
| vid_invert = gr.Checkbox(label="Invert", value=False) | |
| video_output = gr.Video(label="Dotted Output", format="mp4") | |
| video_button = gr.Button("Process Video") | |
| video_button.click( | |
| fn=process_video, | |
| inputs=[video_input, vid_dot_size, vid_spacing, vid_invert], | |
| outputs=video_output | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() | |