Spaces:
Sleeping
Sleeping
Merge branch 'main' into main
Browse files- FineTuneAndEvaluationscores.ipynb +0 -0
- README.md +39 -27
- app.py +7 -0
- finetuneandevaluationscores.py +0 -710
- model_utils.py +0 -0
- requirements.txt +5 -0
FineTuneAndEvaluationscores.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
README.md
CHANGED
|
@@ -1,39 +1,51 @@
|
|
| 1 |
-
#
|
| 2 |
|
| 3 |
-
Generate personalized questions using Hugging Face Transformers and Streamlit UI.
|
| 4 |
|
| 5 |
## 💡 Features
|
| 6 |
-
- T5-based
|
| 7 |
-
- Streamlit frontend
|
| 8 |
-
- Cosine Similarity
|
| 9 |
-
-
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
## 🚀 How to Run
|
| 12 |
|
| 13 |
```bash
|
| 14 |
git clone https://github.com/YOUR_USERNAME/custom-quiz-generator.git
|
| 15 |
cd custom-quiz-generator
|
| 16 |
-
python -m venv venv #run this command if u want to work in a virtual env
|
| 17 |
-
source venv\Scripts\activate #run this command if u want to work in a virtual env
|
| 18 |
-
pip install -r requirements.txt #to install all the required packages and libraries
|
| 19 |
|
| 20 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
custom-quiz-generator/
|
| 22 |
│
|
| 23 |
-
├── app.py
|
| 24 |
-
├──
|
| 25 |
-
├──
|
| 26 |
-
├──
|
| 27 |
-
├──
|
| 28 |
-
├──
|
| 29 |
-
├──
|
| 30 |
-
|
| 31 |
-
├──
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
├──
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
│
|
| 39 |
-
└── assets/ # Images/screenshots for README/demo
|
|
|
|
| 1 |
+
# 📚AI-Powered Custom Quiz Generator - QuizCraft Ai
|
| 2 |
|
| 3 |
+
Generate personalized MCQs, short answer, and true/false questions using Hugging Face Transformers and a Streamlit UI.
|
| 4 |
|
| 5 |
## 💡 Features
|
| 6 |
+
- T5-based Question generator (MCQ, short answer, true/false)
|
| 7 |
+
- Streamlit-based frontend
|
| 8 |
+
- Cosine Similarity, BLEU-1, ROUGE -1 AND ROUGE-L Evaluation
|
| 9 |
+
- Fine-tuned FLAN-T5 integration
|
| 10 |
+
- Customization: Select topic, difficulty, and number of questions
|
| 11 |
+
|
| 12 |
+
|
| 13 |
|
| 14 |
## 🚀 How to Run
|
| 15 |
|
| 16 |
```bash
|
| 17 |
git clone https://github.com/YOUR_USERNAME/custom-quiz-generator.git
|
| 18 |
cd custom-quiz-generator
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
# (Optional) Create virtual environment
|
| 21 |
+
python -m venv venv
|
| 22 |
+
source venv/Scripts/activate # On Windows
|
| 23 |
+
# or
|
| 24 |
+
source venv/bin/activate # On Mac/Linux
|
| 25 |
+
|
| 26 |
+
# Install required dependencies
|
| 27 |
+
pip install -r requirements.txt
|
| 28 |
+
|
| 29 |
+
# Run the app
|
| 30 |
+
streamlit run app.py
|
| 31 |
+
|
| 32 |
+
```
|
| 33 |
+
## Repo Struture
|
| 34 |
+
```
|
| 35 |
custom-quiz-generator/
|
| 36 |
│
|
| 37 |
+
├── app.py # Streamlit UI
|
| 38 |
+
├── fine_tune_and_evaluation.py # Fine-tuning & evaluation script
|
| 39 |
+
├── flan_t5_finetuned_model/ # Directory storing the fine-tuned FLAN-T5 model
|
| 40 |
+
├── mcq_generator.py # MCQ generation script
|
| 41 |
+
├── quiz_logic.py # Core quiz generation logic
|
| 42 |
+
├── short_answer_generator.py # Script for short answer generation
|
| 43 |
+
├── truefalse_quiz.py # True/False question generator
|
| 44 |
+
├── train_v0.2_QuaC.json # Training dataset
|
| 45 |
+
├── outputs/ # Stores generated questions/outputs
|
| 46 |
+
├── valhalla/ # T5-based fine-tuned models
|
| 47 |
+
├── requirements.txt # Project dependencies
|
| 48 |
+
├── FineTuneAndEvaluationscores_CLEANED.ipynb # Evaluation notebook
|
| 49 |
+
├── README.md # Project documentation
|
| 50 |
+
└── .gitignore # Git ignore rules
|
| 51 |
+
```
|
|
|
|
|
|
app.py
CHANGED
|
@@ -19,6 +19,10 @@ question_type = col1.selectbox("Question Type", ["Multiple Choice", "Short Answe
|
|
| 19 |
difficulty = col2.selectbox("Difficulty", ["easy", "medium", "hard"])
|
| 20 |
|
| 21 |
num_questions = st.slider("🔢 Number of Questions", min_value=1, max_value=10, value=3)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
# Generate button
|
| 24 |
if st.button("⚡ Generate Quiz"):
|
|
@@ -81,4 +85,7 @@ if st.button("⚡ Generate Quiz"):
|
|
| 81 |
if questions:
|
| 82 |
st.download_button("⬇️ Download Quiz as PDF", output.getvalue(), file_name="quizcraft_quiz.pdf")
|
| 83 |
|
|
|
|
| 84 |
|
|
|
|
|
|
|
|
|
| 19 |
difficulty = col2.selectbox("Difficulty", ["easy", "medium", "hard"])
|
| 20 |
|
| 21 |
num_questions = st.slider("🔢 Number of Questions", min_value=1, max_value=10, value=3)
|
| 22 |
+
#<<<<<<< main
|
| 23 |
+
#=======
|
| 24 |
+
|
| 25 |
+
#>>>>>>> main
|
| 26 |
|
| 27 |
# Generate button
|
| 28 |
if st.button("⚡ Generate Quiz"):
|
|
|
|
| 85 |
if questions:
|
| 86 |
st.download_button("⬇️ Download Quiz as PDF", output.getvalue(), file_name="quizcraft_quiz.pdf")
|
| 87 |
|
| 88 |
+
#<<<<<<< main
|
| 89 |
|
| 90 |
+
#=======
|
| 91 |
+
#>>>>>>> main
|
finetuneandevaluationscores.py
DELETED
|
@@ -1,710 +0,0 @@
|
|
| 1 |
-
# -*- coding: utf-8 -*-
|
| 2 |
-
"""FineTuneAndEvaluationscores.ipynb
|
| 3 |
-
|
| 4 |
-
Automatically generated by Colab.
|
| 5 |
-
|
| 6 |
-
Original file is located at
|
| 7 |
-
https://colab.research.google.com/drive/122o4g9XIObEOsSOo8-ZcfE0tgGRG-QrV
|
| 8 |
-
"""
|
| 9 |
-
|
| 10 |
-
!pip install torch==2.4.1 transformers==4.44.2 datasets==3.0.1 nltk==3.9.1 pandas==2.2.3 matplotlib==3.8.4 evaluate==0.4.5 rouge_score>=0.1.2 sentence-transformers==2.7.0 -q
|
| 11 |
-
|
| 12 |
-
# Uninstall conflicting packages
|
| 13 |
-
!pip uninstall -y torch torchvision torchaudio pandas fsspec gcsfs -q
|
| 14 |
-
# Install compatible versions
|
| 15 |
-
!pip install torch torchvision torchaudio pandas transformers datasets nltk matplotlib evaluate rouge_score sentence-transformers -q
|
| 16 |
-
|
| 17 |
-
!wget https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json -O train-v1.1.json
|
| 18 |
-
|
| 19 |
-
import json
|
| 20 |
-
|
| 21 |
-
with open('train-v1.1.json', 'r', encoding='utf-8') as f:
|
| 22 |
-
squad_data = json.load(f)
|
| 23 |
-
|
| 24 |
-
# Print the first paragraph to inspect
|
| 25 |
-
print("Sample data:", squad_data['data'][0]['paragraphs'][0])
|
| 26 |
-
|
| 27 |
-
import pandas as pd
|
| 28 |
-
from datasets import Dataset, Features, Value
|
| 29 |
-
|
| 30 |
-
data = []
|
| 31 |
-
for article in squad_data['data']:
|
| 32 |
-
for paragraph in article['paragraphs']:
|
| 33 |
-
context = paragraph['context'].strip()
|
| 34 |
-
for qa in paragraph['qas']:
|
| 35 |
-
question = qa['question'].strip()
|
| 36 |
-
answer = qa['answers'][0]['text'].strip() if qa['answers'] else ""
|
| 37 |
-
if context and question and answer: # Basic cleaning
|
| 38 |
-
data.append({"context": context, "question": question, "answer": answer})
|
| 39 |
-
|
| 40 |
-
# Limit to 100 samples for quick testing
|
| 41 |
-
data = data[:100]
|
| 42 |
-
|
| 43 |
-
# Create DataFrame and Dataset
|
| 44 |
-
df = pd.DataFrame(data)
|
| 45 |
-
features = Features({
|
| 46 |
-
"context": Value("string"),
|
| 47 |
-
"question": Value("string"),
|
| 48 |
-
"answer": Value("string")
|
| 49 |
-
})
|
| 50 |
-
dataset = Dataset.from_pandas(df, features=features)
|
| 51 |
-
train_test_split = dataset.train_test_split(test_size=0.2, seed=42)
|
| 52 |
-
train_dataset = train_test_split["train"]
|
| 53 |
-
eval_dataset = train_test_split["test"]
|
| 54 |
-
|
| 55 |
-
print(f"Train size: {len(train_dataset)} | Eval size: {len(eval_dataset)}")
|
| 56 |
-
print("First train example:", train_dataset[0])
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
# Install dependencies
|
| 61 |
-
!pip uninstall -y torch torchvision torchaudio pandas fsspec gcsfs -q
|
| 62 |
-
!pip install torch torchvision torchaudio pandas transformers datasets nltk matplotlib evaluate rouge_score sentence-transformers -q
|
| 63 |
-
# Restart runtime after installation
|
| 64 |
-
|
| 65 |
-
import json
|
| 66 |
-
import pandas as pd
|
| 67 |
-
from datasets import Dataset, Features, Value
|
| 68 |
-
from transformers import T5Tokenizer, T5ForConditionalGeneration, TrainingArguments, Trainer
|
| 69 |
-
import evaluate
|
| 70 |
-
import matplotlib.pyplot as plt
|
| 71 |
-
import torch
|
| 72 |
-
import nltk
|
| 73 |
-
import numpy as np # Added missing import
|
| 74 |
-
nltk.download('punkt')
|
| 75 |
-
|
| 76 |
-
# Verify setup
|
| 77 |
-
print(f"Torch version: {torch.__version__}")
|
| 78 |
-
print(f"GPU available: {torch.cuda.is_available()}")
|
| 79 |
-
|
| 80 |
-
# Step 2: Download and load dataset
|
| 81 |
-
!wget https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json -O train-v1.1.json
|
| 82 |
-
with open('train-v1.1.json', 'r', encoding='utf-8') as f:
|
| 83 |
-
squad_data = json.load(f)
|
| 84 |
-
print("Sample data:", squad_data['data'][0]['paragraphs'][0])
|
| 85 |
-
|
| 86 |
-
# Step 3: Clean and prepare dataset
|
| 87 |
-
data = []
|
| 88 |
-
for article in squad_data['data']:
|
| 89 |
-
for paragraph in article['paragraphs']:
|
| 90 |
-
context = paragraph['context'].strip()
|
| 91 |
-
for qa in paragraph['qas']:
|
| 92 |
-
question = qa['question'].strip()
|
| 93 |
-
answer = qa['answers'][0]['text'].strip() if qa['answers'] else ""
|
| 94 |
-
if context and question and answer:
|
| 95 |
-
data.append({"context": context, "question": question, "answer": answer})
|
| 96 |
-
|
| 97 |
-
data = data[:100]
|
| 98 |
-
df = pd.DataFrame(data)
|
| 99 |
-
features = Features({
|
| 100 |
-
"context": Value("string"),
|
| 101 |
-
"question": Value("string"),
|
| 102 |
-
"answer": Value("string")
|
| 103 |
-
})
|
| 104 |
-
dataset = Dataset.from_pandas(df, features=features)
|
| 105 |
-
train_test_split = dataset.train_test_split(test_size=0.2, seed=42)
|
| 106 |
-
train_dataset = train_test_split["train"]
|
| 107 |
-
eval_dataset = train_test_split["test"]
|
| 108 |
-
print(f"Train size: {len(train_dataset)} | Eval size: {len(eval_dataset)}")
|
| 109 |
-
print("First train example:", train_dataset[0])
|
| 110 |
-
|
| 111 |
-
# Step 4: Fine-tune the model
|
| 112 |
-
model_name = "valhalla/t5-small-qg-hl"
|
| 113 |
-
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
| 114 |
-
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
| 115 |
-
|
| 116 |
-
def preprocess(examples):
|
| 117 |
-
inputs = [f"generate question: {ctx} {ans}" for ctx, ans in zip(examples['context'], examples['answer'])]
|
| 118 |
-
targets = examples['question']
|
| 119 |
-
model_inputs = tokenizer(inputs, max_length=256, truncation=True, padding="max_length", return_tensors=None)
|
| 120 |
-
labels = tokenizer(targets, max_length=32, truncation=True, padding="max_length")["input_ids"]
|
| 121 |
-
model_inputs["labels"] = labels
|
| 122 |
-
return model_inputs
|
| 123 |
-
|
| 124 |
-
tokenized_train_dataset = train_dataset.map(preprocess, remove_columns=train_dataset.column_names, batched=True)
|
| 125 |
-
tokenized_eval_dataset = eval_dataset.map(preprocess, remove_columns=eval_dataset.column_names, batched=True)
|
| 126 |
-
|
| 127 |
-
tokenized_train_dataset = tokenized_train_dataset.with_format("torch")
|
| 128 |
-
tokenized_eval_dataset = tokenized_eval_dataset.with_format("torch")
|
| 129 |
-
|
| 130 |
-
training_args = TrainingArguments(
|
| 131 |
-
output_dir="./qg-finetuned",
|
| 132 |
-
per_device_train_batch_size=2,
|
| 133 |
-
per_device_eval_batch_size=2,
|
| 134 |
-
num_train_epochs=3, # Increased to 3
|
| 135 |
-
eval_strategy="epoch",
|
| 136 |
-
learning_rate=2e-5,
|
| 137 |
-
logging_dir="./logs",
|
| 138 |
-
logging_steps=10,
|
| 139 |
-
save_strategy="epoch",
|
| 140 |
-
save_total_limit=1,
|
| 141 |
-
fp16=True,
|
| 142 |
-
report_to="none",
|
| 143 |
-
load_best_model_at_end=True,
|
| 144 |
-
metric_for_best_model="eval_loss",
|
| 145 |
-
greater_is_better=False
|
| 146 |
-
)
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
def compute_metrics(eval_pred):
|
| 150 |
-
predictions, labels = eval_pred
|
| 151 |
-
predictions = predictions[0] if isinstance(predictions, tuple) else predictions
|
| 152 |
-
predictions = np.argmax(predictions, axis=-1) if predictions.ndim == 3 else predictions
|
| 153 |
-
labels = np.argmax(labels, axis=-1) if labels.ndim == 3 else labels
|
| 154 |
-
|
| 155 |
-
def decode_sequences(sequences):
|
| 156 |
-
return [tokenizer.decode(seq, skip_special_tokens=True) for seq in sequences]
|
| 157 |
-
|
| 158 |
-
decoded_preds = decode_sequences(predictions)
|
| 159 |
-
decoded_labels = decode_sequences(labels)
|
| 160 |
-
|
| 161 |
-
rouge = evaluate.load("rouge")
|
| 162 |
-
rouge_score = rouge.compute(predictions=decoded_preds, references=decoded_labels)
|
| 163 |
-
|
| 164 |
-
return {
|
| 165 |
-
"rouge1": rouge_score["rouge1"],
|
| 166 |
-
"rougeL": rouge_score["rougeL"]
|
| 167 |
-
}
|
| 168 |
-
|
| 169 |
-
trainer = Trainer(
|
| 170 |
-
model=model,
|
| 171 |
-
args=training_args,
|
| 172 |
-
train_dataset=tokenized_train_dataset,
|
| 173 |
-
eval_dataset=tokenized_eval_dataset,
|
| 174 |
-
compute_metrics=compute_metrics
|
| 175 |
-
)
|
| 176 |
-
|
| 177 |
-
print("Fine-tuning started...")
|
| 178 |
-
trainer.train()
|
| 179 |
-
print("Running final evaluation...")
|
| 180 |
-
results = trainer.evaluate()
|
| 181 |
-
print("Final Evaluation Results:")
|
| 182 |
-
for metric, score in results.items():
|
| 183 |
-
print(f" {metric}: {score}")
|
| 184 |
-
|
| 185 |
-
# Step 5: Generate and evaluate sample questions
|
| 186 |
-
from transformers import GenerationConfig
|
| 187 |
-
model.eval()
|
| 188 |
-
sample = eval_dataset[0]
|
| 189 |
-
inputs = tokenizer(f"generate question: {sample['context']} {sample['answer']}", max_length=256, truncation=True, padding="max_length", return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
| 190 |
-
|
| 191 |
-
generation_config = GenerationConfig(early_stopping=True, num_beams=5, max_length=128) # Adjusted
|
| 192 |
-
outputs = model.generate(**inputs, generation_config=generation_config)
|
| 193 |
-
generated_question = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 194 |
-
|
| 195 |
-
print(f"Context: {sample['context'][:100]}...")
|
| 196 |
-
print(f"Answer: {sample['answer']}")
|
| 197 |
-
print(f"Generated Question: {generated_question}")
|
| 198 |
-
print(f"Reference Question: {sample['question']}")
|
| 199 |
-
|
| 200 |
-
# Step 6: Plot evaluation scores
|
| 201 |
-
log_history = trainer.state.log_history
|
| 202 |
-
epochs = [entry['epoch'] for entry in log_history if 'eval_rouge1' in entry]
|
| 203 |
-
rouge1_scores = [entry['eval_rouge1'] for entry in log_history if 'eval_rouge1' in entry]
|
| 204 |
-
rougeL_scores = [entry['eval_rougeL'] for entry in log_history if 'eval_rougeL' in entry]
|
| 205 |
-
|
| 206 |
-
plt.figure(figsize=(10, 5))
|
| 207 |
-
plt.plot(epochs, rouge1_scores, label='ROUGE-1')
|
| 208 |
-
plt.plot(epochs, rougeL_scores, label='ROUGE-L')
|
| 209 |
-
plt.xlabel('Epoch')
|
| 210 |
-
plt.ylabel('Score')
|
| 211 |
-
plt.title('Evaluation Scores Over Epochs')
|
| 212 |
-
plt.legend()
|
| 213 |
-
plt.grid(True)
|
| 214 |
-
plt.show()
|
| 215 |
-
|
| 216 |
-
# Step 7: Save the model
|
| 217 |
-
model.save_pretrained("./qg-finetuned/final")
|
| 218 |
-
tokenizer.save_pretrained("./qg-finetuned/final")
|
| 219 |
-
print("Model and tokenizer saved!")
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
# Install dependencies
|
| 224 |
-
!pip uninstall -y torch torchvision torchaudio pandas fsspec gcsfs -q
|
| 225 |
-
!pip install torch torchvision torchaudio pandas transformers datasets nltk matplotlib evaluate rouge_score sentence-transformers -q
|
| 226 |
-
# Restart runtime after installation
|
| 227 |
-
|
| 228 |
-
import json
|
| 229 |
-
import pandas as pd
|
| 230 |
-
from datasets import Dataset, Features, Value
|
| 231 |
-
from transformers import T5Tokenizer, T5ForConditionalGeneration, TrainingArguments, Trainer
|
| 232 |
-
import evaluate
|
| 233 |
-
import matplotlib.pyplot as plt
|
| 234 |
-
import torch
|
| 235 |
-
import nltk
|
| 236 |
-
import numpy as np # Added missing import
|
| 237 |
-
nltk.download('punkt')
|
| 238 |
-
|
| 239 |
-
# Verify setup
|
| 240 |
-
print(f"Torch version: {torch.__version__}")
|
| 241 |
-
print(f"GPU available: {torch.cuda.is_available()}")
|
| 242 |
-
|
| 243 |
-
# Step 2: Download and load dataset
|
| 244 |
-
!wget https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json -O train-v1.1.json
|
| 245 |
-
with open('train-v1.1.json', 'r', encoding='utf-8') as f:
|
| 246 |
-
squad_data = json.load(f)
|
| 247 |
-
print("Sample data:", squad_data['data'][0]['paragraphs'][0])
|
| 248 |
-
|
| 249 |
-
# Step 3: Clean and prepare dataset
|
| 250 |
-
data = []
|
| 251 |
-
for article in squad_data['data']:
|
| 252 |
-
for paragraph in article['paragraphs']:
|
| 253 |
-
context = paragraph['context'].strip()
|
| 254 |
-
for qa in paragraph['qas']:
|
| 255 |
-
question = qa['question'].strip()
|
| 256 |
-
answer = qa['answers'][0]['text'].strip() if qa['answers'] else ""
|
| 257 |
-
if context and question and answer:
|
| 258 |
-
data.append({"context": context, "question": question, "answer": answer})
|
| 259 |
-
|
| 260 |
-
data = data[:800]
|
| 261 |
-
df = pd.DataFrame(data)
|
| 262 |
-
features = Features({
|
| 263 |
-
"context": Value("string"),
|
| 264 |
-
"question": Value("string"),
|
| 265 |
-
"answer": Value("string")
|
| 266 |
-
})
|
| 267 |
-
dataset = Dataset.from_pandas(df, features=features)
|
| 268 |
-
train_test_split = dataset.train_test_split(test_size=0.2, seed=42)
|
| 269 |
-
train_dataset = train_test_split["train"]
|
| 270 |
-
eval_dataset = train_test_split["test"]
|
| 271 |
-
print(f"Train size: {len(train_dataset)} | Eval size: {len(eval_dataset)}")
|
| 272 |
-
print("First train example:", train_dataset[0])
|
| 273 |
-
|
| 274 |
-
# Step 4: Fine-tune the model
|
| 275 |
-
model_name = "valhalla/t5-small-qg-hl"
|
| 276 |
-
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
| 277 |
-
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
| 278 |
-
|
| 279 |
-
def preprocess(examples):
|
| 280 |
-
inputs = [f"generate question: {ctx} {ans}" for ctx, ans in zip(examples['context'], examples['answer'])]
|
| 281 |
-
targets = examples['question']
|
| 282 |
-
model_inputs = tokenizer(inputs, max_length=256, truncation=True, padding="max_length", return_tensors=None)
|
| 283 |
-
labels = tokenizer(targets, max_length=32, truncation=True, padding="max_length")["input_ids"]
|
| 284 |
-
model_inputs["labels"] = labels
|
| 285 |
-
return model_inputs
|
| 286 |
-
|
| 287 |
-
tokenized_train_dataset = train_dataset.map(preprocess, remove_columns=train_dataset.column_names, batched=True)
|
| 288 |
-
tokenized_eval_dataset = eval_dataset.map(preprocess, remove_columns=eval_dataset.column_names, batched=True)
|
| 289 |
-
|
| 290 |
-
tokenized_train_dataset = tokenized_train_dataset.with_format("torch")
|
| 291 |
-
tokenized_eval_dataset = tokenized_eval_dataset.with_format("torch")
|
| 292 |
-
|
| 293 |
-
training_args = TrainingArguments(
|
| 294 |
-
output_dir="./qg-finetuned",
|
| 295 |
-
per_device_train_batch_size=4,
|
| 296 |
-
per_device_eval_batch_size=4,
|
| 297 |
-
num_train_epochs=2,
|
| 298 |
-
eval_strategy="epoch",
|
| 299 |
-
learning_rate=2e-5,
|
| 300 |
-
logging_dir="./logs",
|
| 301 |
-
logging_steps=10,
|
| 302 |
-
save_strategy="epoch",
|
| 303 |
-
save_total_limit=1,
|
| 304 |
-
fp16=True,
|
| 305 |
-
report_to="none",
|
| 306 |
-
load_best_model_at_end=True,
|
| 307 |
-
metric_for_best_model="eval_loss",
|
| 308 |
-
greater_is_better=False
|
| 309 |
-
)
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
def compute_metrics(eval_pred):
|
| 313 |
-
predictions, labels = eval_pred
|
| 314 |
-
predictions = predictions[0] if isinstance(predictions, tuple) else predictions
|
| 315 |
-
predictions = np.argmax(predictions, axis=-1) if predictions.ndim == 3 else predictions
|
| 316 |
-
labels = np.argmax(labels, axis=-1) if labels.ndim == 3 else labels
|
| 317 |
-
|
| 318 |
-
def decode_sequences(sequences):
|
| 319 |
-
return [tokenizer.decode(seq, skip_special_tokens=True) for seq in sequences]
|
| 320 |
-
|
| 321 |
-
decoded_preds = decode_sequences(predictions)
|
| 322 |
-
decoded_labels = decode_sequences(labels)
|
| 323 |
-
|
| 324 |
-
rouge = evaluate.load("rouge")
|
| 325 |
-
rouge_score = rouge.compute(predictions=decoded_preds, references=decoded_labels)
|
| 326 |
-
|
| 327 |
-
return {
|
| 328 |
-
"rouge1": rouge_score["rouge1"],
|
| 329 |
-
"rougeL": rouge_score["rougeL"]
|
| 330 |
-
}
|
| 331 |
-
|
| 332 |
-
trainer = Trainer(
|
| 333 |
-
model=model,
|
| 334 |
-
args=training_args,
|
| 335 |
-
train_dataset=tokenized_train_dataset,
|
| 336 |
-
eval_dataset=tokenized_eval_dataset,
|
| 337 |
-
compute_metrics=compute_metrics
|
| 338 |
-
)
|
| 339 |
-
|
| 340 |
-
print("Fine-tuning started...")
|
| 341 |
-
trainer.train()
|
| 342 |
-
print("Running final evaluation...")
|
| 343 |
-
results = trainer.evaluate()
|
| 344 |
-
print("Final Evaluation Results:")
|
| 345 |
-
for metric, score in results.items():
|
| 346 |
-
print(f" {metric}: {score}")
|
| 347 |
-
|
| 348 |
-
# Step 5: Generate and evaluate sample questions
|
| 349 |
-
from transformers import GenerationConfig
|
| 350 |
-
model.eval()
|
| 351 |
-
sample = eval_dataset[0]
|
| 352 |
-
inputs = tokenizer(f"generate question: {sample['context']} {sample['answer']}", max_length=256, truncation=True, padding="max_length", return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
| 353 |
-
|
| 354 |
-
generation_config = GenerationConfig(early_stopping=True, num_beams=5, max_length=128) # Adjusted
|
| 355 |
-
outputs = model.generate(**inputs, generation_config=generation_config)
|
| 356 |
-
generated_question = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 357 |
-
|
| 358 |
-
print(f"Context: {sample['context'][:100]}...")
|
| 359 |
-
print(f"Answer: {sample['answer']}")
|
| 360 |
-
print(f"Generated Question: {generated_question}")
|
| 361 |
-
print(f"Reference Question: {sample['question']}")
|
| 362 |
-
|
| 363 |
-
# Step 6: Plot evaluation scores
|
| 364 |
-
log_history = trainer.state.log_history
|
| 365 |
-
epochs = [entry['epoch'] for entry in log_history if 'eval_rouge1' in entry]
|
| 366 |
-
rouge1_scores = [entry['eval_rouge1'] for entry in log_history if 'eval_rouge1' in entry]
|
| 367 |
-
rougeL_scores = [entry['eval_rougeL'] for entry in log_history if 'eval_rougeL' in entry]
|
| 368 |
-
|
| 369 |
-
plt.figure(figsize=(10, 5))
|
| 370 |
-
plt.plot(epochs, rouge1_scores, label='ROUGE-1')
|
| 371 |
-
plt.plot(epochs, rougeL_scores, label='ROUGE-L')
|
| 372 |
-
plt.xlabel('Epoch')
|
| 373 |
-
plt.ylabel('Score')
|
| 374 |
-
plt.title('Evaluation Scores Over Epochs')
|
| 375 |
-
plt.legend()
|
| 376 |
-
plt.grid(True)
|
| 377 |
-
plt.show()
|
| 378 |
-
|
| 379 |
-
# Step 7: Save the model
|
| 380 |
-
model.save_pretrained("./qg-finetuned/final")
|
| 381 |
-
tokenizer.save_pretrained("./qg-finetuned/final")
|
| 382 |
-
print("Model and tokenizer saved!")
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
# Install dependencies
|
| 387 |
-
!pip uninstall -y torch torchvision torchaudio pandas fsspec gcsfs -q
|
| 388 |
-
!pip install torch torchvision torchaudio pandas transformers datasets nltk matplotlib evaluate rouge_score sentence-transformers -q
|
| 389 |
-
# Restart runtime after installation
|
| 390 |
-
|
| 391 |
-
import json
|
| 392 |
-
import pandas as pd
|
| 393 |
-
from datasets import Dataset, Features, Value
|
| 394 |
-
from transformers import T5Tokenizer, T5ForConditionalGeneration, TrainingArguments, Trainer
|
| 395 |
-
import evaluate
|
| 396 |
-
import matplotlib.pyplot as plt
|
| 397 |
-
import torch
|
| 398 |
-
import nltk
|
| 399 |
-
import numpy as np # Added missing import
|
| 400 |
-
nltk.download('punkt')
|
| 401 |
-
|
| 402 |
-
# Verify setup
|
| 403 |
-
print(f"Torch version: {torch.__version__}")
|
| 404 |
-
print(f"GPU available: {torch.cuda.is_available()}")
|
| 405 |
-
|
| 406 |
-
# Step 2: Download and load dataset
|
| 407 |
-
!wget https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json -O train-v1.1.json
|
| 408 |
-
with open('train-v1.1.json', 'r', encoding='utf-8') as f:
|
| 409 |
-
squad_data = json.load(f)
|
| 410 |
-
print("Sample data:", squad_data['data'][0]['paragraphs'][0])
|
| 411 |
-
|
| 412 |
-
# Step 3: Clean and prepare dataset
|
| 413 |
-
data = []
|
| 414 |
-
for article in squad_data['data']:
|
| 415 |
-
for paragraph in article['paragraphs']:
|
| 416 |
-
context = paragraph['context'].strip()
|
| 417 |
-
for qa in paragraph['qas']:
|
| 418 |
-
question = qa['question'].strip()
|
| 419 |
-
answer = qa['answers'][0]['text'].strip() if qa['answers'] else ""
|
| 420 |
-
if context and question and answer:
|
| 421 |
-
data.append({"context": context, "question": question, "answer": answer})
|
| 422 |
-
|
| 423 |
-
data = data[:800]
|
| 424 |
-
df = pd.DataFrame(data)
|
| 425 |
-
features = Features({
|
| 426 |
-
"context": Value("string"),
|
| 427 |
-
"question": Value("string"),
|
| 428 |
-
"answer": Value("string")
|
| 429 |
-
})
|
| 430 |
-
dataset = Dataset.from_pandas(df, features=features)
|
| 431 |
-
train_test_split = dataset.train_test_split(test_size=0.2, seed=42)
|
| 432 |
-
train_dataset = train_test_split["train"]
|
| 433 |
-
eval_dataset = train_test_split["test"]
|
| 434 |
-
print(f"Train size: {len(train_dataset)} | Eval size: {len(eval_dataset)}")
|
| 435 |
-
print("First train example:", train_dataset[0])
|
| 436 |
-
|
| 437 |
-
# Step 4: Fine-tune the model
|
| 438 |
-
model_name = "valhalla/t5-small-qg-hl"
|
| 439 |
-
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
| 440 |
-
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
| 441 |
-
|
| 442 |
-
def preprocess(examples):
|
| 443 |
-
inputs = []
|
| 444 |
-
for ctx, ans in zip(examples['context'], examples['answer']):
|
| 445 |
-
if ans in ctx:
|
| 446 |
-
highlighted = ctx.replace(ans, f"<hl> {ans} <hl>")
|
| 447 |
-
inputs.append(f"generate question: {highlighted}")
|
| 448 |
-
else:
|
| 449 |
-
inputs.append(f"generate question: {ctx} <hl> {ans} <hl>")
|
| 450 |
-
targets = examples['question']
|
| 451 |
-
model_inputs = tokenizer(inputs, max_length=256, truncation=True, padding="max_length", return_tensors=None)
|
| 452 |
-
labels = tokenizer(targets, max_length=32, truncation=True, padding="max_length")["input_ids"]
|
| 453 |
-
model_inputs["labels"] = labels
|
| 454 |
-
return model_inputs
|
| 455 |
-
|
| 456 |
-
tokenized_train_dataset = train_dataset.map(preprocess, remove_columns=train_dataset.column_names, batched=True)
|
| 457 |
-
tokenized_eval_dataset = eval_dataset.map(preprocess, remove_columns=eval_dataset.column_names, batched=True)
|
| 458 |
-
|
| 459 |
-
tokenized_train_dataset = tokenized_train_dataset.with_format("torch")
|
| 460 |
-
tokenized_eval_dataset = tokenized_eval_dataset.with_format("torch")
|
| 461 |
-
|
| 462 |
-
training_args = TrainingArguments(
|
| 463 |
-
output_dir="./qg-finetuned",
|
| 464 |
-
per_device_train_batch_size=4,
|
| 465 |
-
per_device_eval_batch_size=4,
|
| 466 |
-
num_train_epochs=2,
|
| 467 |
-
eval_strategy="epoch",
|
| 468 |
-
learning_rate=2e-5,
|
| 469 |
-
logging_dir="./logs",
|
| 470 |
-
logging_steps=10,
|
| 471 |
-
save_strategy="epoch",
|
| 472 |
-
save_total_limit=1,
|
| 473 |
-
fp16=True,
|
| 474 |
-
report_to="none",
|
| 475 |
-
load_best_model_at_end=True,
|
| 476 |
-
metric_for_best_model="eval_loss",
|
| 477 |
-
greater_is_better=False
|
| 478 |
-
)
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
def compute_metrics(eval_pred):
|
| 482 |
-
predictions, labels = eval_pred
|
| 483 |
-
predictions = predictions[0] if isinstance(predictions, tuple) else predictions
|
| 484 |
-
predictions = np.argmax(predictions, axis=-1) if predictions.ndim == 3 else predictions
|
| 485 |
-
labels = np.argmax(labels, axis=-1) if labels.ndim == 3 else labels
|
| 486 |
-
|
| 487 |
-
def decode_sequences(sequences):
|
| 488 |
-
return [tokenizer.decode(seq, skip_special_tokens=True) for seq in sequences]
|
| 489 |
-
|
| 490 |
-
decoded_preds = decode_sequences(predictions)
|
| 491 |
-
decoded_labels = decode_sequences(labels)
|
| 492 |
-
|
| 493 |
-
rouge = evaluate.load("rouge")
|
| 494 |
-
rouge_score = rouge.compute(predictions=decoded_preds, references=decoded_labels)
|
| 495 |
-
|
| 496 |
-
return {
|
| 497 |
-
"rouge1": rouge_score["rouge1"],
|
| 498 |
-
"rougeL": rouge_score["rougeL"]
|
| 499 |
-
}
|
| 500 |
-
|
| 501 |
-
trainer = Trainer(
|
| 502 |
-
model=model,
|
| 503 |
-
args=training_args,
|
| 504 |
-
train_dataset=tokenized_train_dataset,
|
| 505 |
-
eval_dataset=tokenized_eval_dataset,
|
| 506 |
-
compute_metrics=compute_metrics
|
| 507 |
-
)
|
| 508 |
-
|
| 509 |
-
print("Fine-tuning started...")
|
| 510 |
-
trainer.train()
|
| 511 |
-
print("Running final evaluation...")
|
| 512 |
-
results = trainer.evaluate()
|
| 513 |
-
print("Final Evaluation Results:")
|
| 514 |
-
for metric, score in results.items():
|
| 515 |
-
print(f" {metric}: {score}")
|
| 516 |
-
|
| 517 |
-
# Step 5: Generate and evaluate sample questions
|
| 518 |
-
from transformers import GenerationConfig
|
| 519 |
-
model.eval()
|
| 520 |
-
sample = eval_dataset[0]
|
| 521 |
-
inputs = tokenizer(f"generate question: {sample['context']} {sample['answer']}", max_length=256, truncation=True, padding="max_length", return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
| 522 |
-
|
| 523 |
-
generation_config = GenerationConfig(early_stopping=True, num_beams=5, max_length=128) # Adjusted
|
| 524 |
-
outputs = model.generate(**inputs, generation_config=generation_config)
|
| 525 |
-
generated_question = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 526 |
-
|
| 527 |
-
print(f"Context: {sample['context'][:100]}...")
|
| 528 |
-
print(f"Answer: {sample['answer']}")
|
| 529 |
-
print(f"Generated Question: {generated_question}")
|
| 530 |
-
print(f"Reference Question: {sample['question']}")
|
| 531 |
-
|
| 532 |
-
# Step 6: Plot evaluation scores
|
| 533 |
-
log_history = trainer.state.log_history
|
| 534 |
-
epochs = [entry['epoch'] for entry in log_history if 'eval_rouge1' in entry]
|
| 535 |
-
rouge1_scores = [entry['eval_rouge1'] for entry in log_history if 'eval_rouge1' in entry]
|
| 536 |
-
rougeL_scores = [entry['eval_rougeL'] for entry in log_history if 'eval_rougeL' in entry]
|
| 537 |
-
|
| 538 |
-
plt.figure(figsize=(10, 5))
|
| 539 |
-
plt.plot(epochs, rouge1_scores, label='ROUGE-1')
|
| 540 |
-
plt.plot(epochs, rougeL_scores, label='ROUGE-L')
|
| 541 |
-
plt.xlabel('Epoch')
|
| 542 |
-
plt.ylabel('Score')
|
| 543 |
-
plt.title('Evaluation Scores Over Epochs')
|
| 544 |
-
plt.legend()
|
| 545 |
-
plt.grid(True)
|
| 546 |
-
plt.show()
|
| 547 |
-
|
| 548 |
-
# Step 7: Save the model
|
| 549 |
-
model.save_pretrained("./qg-finetuned/final")
|
| 550 |
-
tokenizer.save_pretrained("./qg-finetuned/final")
|
| 551 |
-
print("Model and tokenizer saved!")
|
| 552 |
-
|
| 553 |
-
from tqdm import tqdm
|
| 554 |
-
|
| 555 |
-
decoded_preds = []
|
| 556 |
-
decoded_refs = []
|
| 557 |
-
|
| 558 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 559 |
-
model.to(device)
|
| 560 |
-
model.eval()
|
| 561 |
-
|
| 562 |
-
for i, sample in enumerate(tqdm(eval_dataset)):
|
| 563 |
-
if sample["answer"] in sample["context"]:
|
| 564 |
-
highlighted_context = sample["context"].replace(sample["answer"], f"<hl> {sample['answer']} <hl>")
|
| 565 |
-
else:
|
| 566 |
-
highlighted_context = sample["context"] + f" <hl> {sample['answer']} <hl>"
|
| 567 |
-
|
| 568 |
-
input_text = f"generate question: {highlighted_context}"
|
| 569 |
-
inputs = tokenizer(
|
| 570 |
-
input_text,
|
| 571 |
-
return_tensors="pt",
|
| 572 |
-
truncation=True,
|
| 573 |
-
padding="max_length",
|
| 574 |
-
max_length=256
|
| 575 |
-
).to(device)
|
| 576 |
-
|
| 577 |
-
output_ids = model.generate(
|
| 578 |
-
**inputs,
|
| 579 |
-
max_length=64,
|
| 580 |
-
num_beams=4,
|
| 581 |
-
early_stopping=False, # <— loosen this up for now
|
| 582 |
-
no_repeat_ngram_size=2
|
| 583 |
-
)
|
| 584 |
-
|
| 585 |
-
# 🪵 Debug print
|
| 586 |
-
print(f"\n--- Sample {i + 1} ---")
|
| 587 |
-
print("Raw token IDs:", output_ids[0].tolist())
|
| 588 |
-
|
| 589 |
-
decoded_pred = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 590 |
-
print("Decoded Prediction:", decoded_pred)
|
| 591 |
-
|
| 592 |
-
decoded_preds.append(decoded_pred)
|
| 593 |
-
decoded_refs.append(sample["question"])
|
| 594 |
-
|
| 595 |
-
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
|
| 596 |
-
|
| 597 |
-
# Use smoothing to avoid zero score for short outputs
|
| 598 |
-
smoothie = SmoothingFunction().method1
|
| 599 |
-
|
| 600 |
-
bleu_scores = []
|
| 601 |
-
print("\nSample Predictions vs References with BLEU-1:")
|
| 602 |
-
print("-" * 50)
|
| 603 |
-
|
| 604 |
-
for i in range(min(5, len(decoded_preds))):
|
| 605 |
-
pred = decoded_preds[i]
|
| 606 |
-
ref = decoded_refs[i]
|
| 607 |
-
bleu = sentence_bleu([ref.split()], pred.split(), weights=(1, 0, 0, 0), smoothing_function=smoothie)
|
| 608 |
-
|
| 609 |
-
print(f"\nSample {i + 1}")
|
| 610 |
-
print(f"Prediction : {pred}")
|
| 611 |
-
print(f"Reference : {ref}")
|
| 612 |
-
print(f"BLEU-1 : {bleu:.4f}")
|
| 613 |
-
bleu_scores.append(bleu)
|
| 614 |
-
|
| 615 |
-
# Compute average BLEU-1 score across all examples
|
| 616 |
-
avg_bleu = sum(bleu_scores) / len(bleu_scores) if bleu_scores else 0
|
| 617 |
-
print(f"\nAverage BLEU-1 Score on Eval Set: {avg_bleu:.4f}")
|
| 618 |
-
|
| 619 |
-
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
|
| 620 |
-
|
| 621 |
-
for i, (pred, ref) in enumerate(zip(decoded_preds, decoded_refs)):
|
| 622 |
-
bleu2 = sentence_bleu([ref.split()], pred.split(), weights=(0.5, 0.5), smoothing_function=smoothie)
|
| 623 |
-
bleu4 = sentence_bleu([ref.split()], pred.split(), weights=(0.25, 0.25, 0.25, 0.25), smoothing_function=smoothie)
|
| 624 |
-
print(f"Sample {i+1}\nBLEU-2: {bleu2:.4f}, BLEU-4: {bleu4:.4f}")
|
| 625 |
-
|
| 626 |
-
print("Length of decoded_preds:", len(decoded_preds))
|
| 627 |
-
print("Length of decoded_refs:", len(decoded_refs))
|
| 628 |
-
print("Length of bleu_scores:", len(bleu_scores))
|
| 629 |
-
|
| 630 |
-
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
|
| 631 |
-
|
| 632 |
-
smoothing = SmoothingFunction().method1
|
| 633 |
-
bleu_scores = [
|
| 634 |
-
sentence_bleu([ref.split()], pred.split(), weights=(1, 0, 0, 0), smoothing_function=smoothing)
|
| 635 |
-
for pred, ref in zip(decoded_preds, decoded_refs)
|
| 636 |
-
]
|
| 637 |
-
|
| 638 |
-
df = pd.DataFrame({
|
| 639 |
-
"Prediction": decoded_preds,
|
| 640 |
-
"Reference": decoded_refs,
|
| 641 |
-
"BLEU-1": bleu_scores
|
| 642 |
-
})
|
| 643 |
-
df.to_csv("question_generation_bleu_scores.csv", index=False)
|
| 644 |
-
|
| 645 |
-
#preview of the file
|
| 646 |
-
import pandas as pd
|
| 647 |
-
|
| 648 |
-
df_check = pd.read_csv("question_generation_bleu_scores.csv")
|
| 649 |
-
print(df_check.head())
|
| 650 |
-
|
| 651 |
-
# Plot ROUGE-1 and ROUGE-L scores over epochs
|
| 652 |
-
plt.figure(figsize=(10, 5))
|
| 653 |
-
plt.plot(epochs, rouge1_scores, marker='o', label='ROUGE-1')
|
| 654 |
-
plt.plot(epochs, rougeL_scores, marker='o', label='ROUGE-L')
|
| 655 |
-
plt.xlabel('Epoch')
|
| 656 |
-
plt.ylabel('Score')
|
| 657 |
-
plt.title('ROUGE Scores over Epochs')
|
| 658 |
-
plt.legend()
|
| 659 |
-
plt.grid(True)
|
| 660 |
-
plt.tight_layout()
|
| 661 |
-
plt.show()
|
| 662 |
-
|
| 663 |
-
#ADD TO YOUR REPORT :
|
| 664 |
-
#INTERPRETATION : The line plot shows a steady increase in both ROUGE-1 and ROUGE-L scores over training epochs, indicating that the model's ability to generate relevant and coherent questions improved progressively. ROUGE-1 evaluates unigram overlap, while ROUGE-L captures longest common subsequence similarity, so their combined trend confirms enhanced syntactic and semantic alignment with reference questions.
|
| 665 |
-
|
| 666 |
-
#Histogram: BLEU-1 Score Distribution
|
| 667 |
-
import matplotlib.pyplot as plt
|
| 668 |
-
|
| 669 |
-
# BLEU score histogram
|
| 670 |
-
plt.figure(figsize=(8, 4))
|
| 671 |
-
plt.hist(bleu_scores, bins=10, color='skyblue', edgecolor='black')
|
| 672 |
-
plt.title('BLEU-1 Score Distribution')
|
| 673 |
-
plt.xlabel('BLEU-1 Score')
|
| 674 |
-
plt.ylabel('Frequency')
|
| 675 |
-
plt.grid(True)
|
| 676 |
-
plt.tight_layout()
|
| 677 |
-
plt.show()
|
| 678 |
-
|
| 679 |
-
#INTERPRETATION : The BLEU-1 histogram reveals that most generated questions received lower unigram overlap scores, with only a few predictions achieving high similarity with the reference. This is expected in generative tasks, especially when multiple valid phrasings exist for a single question.
|
| 680 |
-
|
| 681 |
-
print("Length of BLEU-1 scores:", len(bleu_scores))
|
| 682 |
-
print("Length of ROUGE-1 scores:", len(rouge1_scores))
|
| 683 |
-
|
| 684 |
-
import evaluate
|
| 685 |
-
rouge = evaluate.load("rouge")
|
| 686 |
-
|
| 687 |
-
rouge1_scores = []
|
| 688 |
-
rougeL_scores = []
|
| 689 |
-
|
| 690 |
-
for pred, ref in zip(decoded_preds, decoded_refs):
|
| 691 |
-
result = rouge.compute(predictions=[pred], references=[ref])
|
| 692 |
-
rouge1_scores.append(result["rouge1"])
|
| 693 |
-
rougeL_scores.append(result["rougeL"])
|
| 694 |
-
|
| 695 |
-
print("Length of BLEU-1 scores:", len(bleu_scores))
|
| 696 |
-
print("Length of ROUGE-1 scores:", len(rouge1_scores))
|
| 697 |
-
|
| 698 |
-
#Scatter Plot Between BLEU-1 and ROUGE-1
|
| 699 |
-
import matplotlib.pyplot as plt
|
| 700 |
-
|
| 701 |
-
plt.figure(figsize=(8, 6))
|
| 702 |
-
plt.scatter(bleu_scores, rouge1_scores, alpha=0.6, color='purple')
|
| 703 |
-
plt.title('BLEU-1 vs ROUGE-1 Scores')
|
| 704 |
-
plt.xlabel('BLEU-1 Score')
|
| 705 |
-
plt.ylabel('ROUGE-1 Score')
|
| 706 |
-
plt.grid(True)
|
| 707 |
-
plt.show()
|
| 708 |
-
|
| 709 |
-
#Interpretation : To assess the quality of the generated questions, we computed BLEU-1, ROUGE-1, and ROUGE-L scores across the evaluation set. While BLEU-1 captures exact n-gram overlap, ROUGE measures both lexical and semantic similarity more flexibly. A scatter plot comparing BLEU-1 and ROUGE-1 scores showed moderate variation, with some samples scoring high on ROUGE despite lower BLEU, suggesting semantic validity despite lexical mismatch. This highlights the limitation of using a single metric and motivates multi-metric evaluation for generative tasks.
|
| 710 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model_utils.py
DELETED
|
File without changes
|
requirements.txt
CHANGED
|
@@ -7,6 +7,10 @@ pandas==2.3.1
|
|
| 7 |
numpy>=1.17
|
| 8 |
tqdm>=4.27
|
| 9 |
scipy
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# PyTorch (CPU version)
|
| 12 |
torch==2.3.0
|
|
@@ -24,3 +28,4 @@ filelock
|
|
| 24 |
fsspec
|
| 25 |
|
| 26 |
accelerate>=0.26.0
|
|
|
|
|
|
| 7 |
numpy>=1.17
|
| 8 |
tqdm>=4.27
|
| 9 |
scipy
|
| 10 |
+
streamlit
|
| 11 |
+
nltk
|
| 12 |
+
|
| 13 |
+
|
| 14 |
|
| 15 |
# PyTorch (CPU version)
|
| 16 |
torch==2.3.0
|
|
|
|
| 28 |
fsspec
|
| 29 |
|
| 30 |
accelerate>=0.26.0
|
| 31 |
+
sentence-transformers
|