Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,21 +1,22 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
PLANETYOYO AI Ultimate
|
| 4 |
==================================================================
|
| 5 |
|
| 6 |
Features:
|
| 7 |
---------
|
| 8 |
-
1. Complete AI Consensus (
|
| 9 |
2. Top-5 Disease Predictions
|
| 10 |
-
3. Multi-source Environmental Data
|
| 11 |
4. Hebrew Language Model Integration
|
| 12 |
5. Raw Data Archiving to Hugging Face
|
| 13 |
6. Professional UI Design
|
| 14 |
-
7. IoT Integration (Adafruit, Telegram)
|
| 15 |
8. Batch Processing & Forecasting
|
| 16 |
|
| 17 |
Author: PLANETYOYO Team
|
| 18 |
License: MIT
|
|
|
|
| 19 |
"""
|
| 20 |
|
| 21 |
import subprocess
|
|
@@ -25,6 +26,8 @@ from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
| 25 |
import time
|
| 26 |
import json
|
| 27 |
import requests
|
|
|
|
|
|
|
| 28 |
import shutil
|
| 29 |
import csv
|
| 30 |
from datetime import datetime, timedelta
|
|
@@ -36,16 +39,7 @@ from typing import Dict, List, Any, Optional, Tuple
|
|
| 36 |
# ========================================================
|
| 37 |
|
| 38 |
def install_package(package_name: str, import_name: str = None):
|
| 39 |
-
"""
|
| 40 |
-
Install Python package if not available.
|
| 41 |
-
|
| 42 |
-
Args:
|
| 43 |
-
package_name: Package name in pip
|
| 44 |
-
import_name: Name used in import statement (if different)
|
| 45 |
-
|
| 46 |
-
Returns:
|
| 47 |
-
bool: True if package is available or was installed successfully
|
| 48 |
-
"""
|
| 49 |
if import_name is None:
|
| 50 |
import_name = package_name
|
| 51 |
|
|
@@ -203,7 +197,41 @@ PLANT_NAMES_TO_FILTER = [
|
|
| 203 |
]
|
| 204 |
|
| 205 |
# ========================================================
|
| 206 |
-
# SECTION 4:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
# ========================================================
|
| 208 |
|
| 209 |
CUSTOM_CSS = """
|
|
@@ -224,8 +252,8 @@ CUSTOM_CSS = """
|
|
| 224 |
}
|
| 225 |
|
| 226 |
body {
|
| 227 |
-
background: var(--bg);
|
| 228 |
-
color: var(--text);
|
| 229 |
font-family: 'Segoe UI', system-ui, sans-serif;
|
| 230 |
}
|
| 231 |
|
|
@@ -234,7 +262,6 @@ body {
|
|
| 234 |
margin: 0 auto;
|
| 235 |
}
|
| 236 |
|
| 237 |
-
/* Header */
|
| 238 |
.header-banner {
|
| 239 |
background: linear-gradient(135deg, var(--primary) 0%, var(--primary-light) 100%);
|
| 240 |
color: white;
|
|
@@ -250,7 +277,6 @@ body {
|
|
| 250 |
font-weight: 600;
|
| 251 |
}
|
| 252 |
|
| 253 |
-
/* Buttons */
|
| 254 |
button.primary {
|
| 255 |
background: var(--primary) !important;
|
| 256 |
color: white !important;
|
|
@@ -267,7 +293,6 @@ button.primary:hover {
|
|
| 267 |
box-shadow: 0 4px 8px rgba(0,0,0,0.2);
|
| 268 |
}
|
| 269 |
|
| 270 |
-
/* Inputs */
|
| 271 |
input, textarea, select {
|
| 272 |
border: 2px solid var(--border) !important;
|
| 273 |
border-radius: 8px !important;
|
|
@@ -279,7 +304,6 @@ input:focus, textarea:focus {
|
|
| 279 |
box-shadow: 0 0 0 3px rgba(45, 80, 22, 0.1) !important;
|
| 280 |
}
|
| 281 |
|
| 282 |
-
/* Cards */
|
| 283 |
.card {
|
| 284 |
background: var(--surface);
|
| 285 |
border: 1px solid var(--border);
|
|
@@ -288,7 +312,6 @@ input:focus, textarea:focus {
|
|
| 288 |
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
|
| 289 |
}
|
| 290 |
|
| 291 |
-
/* Hebrew Text */
|
| 292 |
.hebrew-text {
|
| 293 |
direction: rtl;
|
| 294 |
text-align: right;
|
|
@@ -298,7 +321,6 @@ input:focus, textarea:focus {
|
|
| 298 |
border: 2px solid var(--accent);
|
| 299 |
}
|
| 300 |
|
| 301 |
-
/* Footer */
|
| 302 |
.footer {
|
| 303 |
text-align: center;
|
| 304 |
padding: 2rem;
|
|
@@ -309,7 +331,7 @@ input:focus, textarea:focus {
|
|
| 309 |
"""
|
| 310 |
|
| 311 |
# ========================================================
|
| 312 |
-
# SECTION
|
| 313 |
# ========================================================
|
| 314 |
|
| 315 |
PLANT_MODELS_CACHE = {}
|
|
@@ -319,340 +341,371 @@ MODEL_WEIGHTS = {}
|
|
| 319 |
last_analysis_details: Optional[Dict] = None
|
| 320 |
|
| 321 |
# ========================================================
|
| 322 |
-
# SECTION
|
| 323 |
# ========================================================
|
| 324 |
|
| 325 |
PLANT_AI_MODELS = {
|
| 326 |
-
#
|
|
|
|
|
|
|
| 327 |
"PlantNet-Species-Expert": {
|
| 328 |
"model_id": "google/vit-large-patch16-224-in21k",
|
| 329 |
"specialty": "Species|Taxonomy|Fine-Grained",
|
| 330 |
"reliability": 0.95,
|
| 331 |
"priority": 1,
|
| 332 |
-
"type": "species"
|
| 333 |
-
"is_primary": True
|
| 334 |
},
|
| 335 |
"Flora-Vision-v2": {
|
| 336 |
"model_id": "facebook/deit-base-distilled-patch16-224",
|
| 337 |
"specialty": "Species|Garden|Agricultural",
|
| 338 |
"reliability": 0.91,
|
| 339 |
"priority": 3,
|
| 340 |
-
"type": "species"
|
| 341 |
-
"is_primary": True
|
| 342 |
},
|
| 343 |
"Flower-Classify": {
|
| 344 |
"model_id": "facebook/convnext-base-224-22k",
|
| 345 |
"specialty": "Species|Flower|Herbs",
|
| 346 |
"reliability": 0.92,
|
| 347 |
"priority": 3,
|
| 348 |
-
"type": "species"
|
| 349 |
-
"is_primary": True
|
| 350 |
},
|
| 351 |
"Solana-Detect-v1": {
|
| 352 |
"model_id": "Sharan007/ViT-Base-Patch16-224-FineTuned-PlantVillage",
|
| 353 |
"specialty": "Family|Species|Crops",
|
| 354 |
"reliability": 0.94,
|
| 355 |
"priority": 2,
|
| 356 |
-
"type": "species"
|
| 357 |
-
"is_primary": True
|
| 358 |
},
|
| 359 |
"Tree-Identifier-Pro": {
|
| 360 |
"model_id": "microsoft/resnet-50",
|
| 361 |
"specialty": "Species|Tree",
|
| 362 |
"reliability": 0.89,
|
| 363 |
"priority": 4,
|
| 364 |
-
"type": "species"
|
| 365 |
-
"is_primary": True
|
| 366 |
-
|
| 367 |
},
|
| 368 |
"Flower-Morphology-Expert": {
|
| 369 |
"model_id": "facebook/convnext-base-224-22k-1k",
|
| 370 |
"specialty": "Species|Flower",
|
| 371 |
"reliability": 0.87,
|
| 372 |
"priority": 6,
|
| 373 |
-
"type": "species"
|
| 374 |
-
"is_primary": True
|
| 375 |
-
|
| 376 |
},
|
| 377 |
"Herb-Medicine-Classifier": {
|
| 378 |
"model_id": "microsoft/beit-base-patch16-224-pt22k-ft22k",
|
| 379 |
"specialty": "Species|Herb|Medicinal",
|
| 380 |
"reliability": 0.86,
|
| 381 |
"priority": 7,
|
| 382 |
-
"type": "species"
|
| 383 |
-
"is_primary": True
|
| 384 |
-
|
| 385 |
},
|
| 386 |
"Fruit-Ripeness-ViT": {
|
| 387 |
"model_id": "google/vit-large-patch16-224",
|
| 388 |
"specialty": "Species|Fruit|Ripeness",
|
| 389 |
"reliability": 0.91,
|
| 390 |
"priority": 3,
|
| 391 |
-
"type": "species"
|
| 392 |
-
"is_primary": True
|
| 393 |
-
|
| 394 |
},
|
| 395 |
"Ornamental-EfficientNet": {
|
| 396 |
"model_id": "google/efficientnet-b3",
|
| 397 |
"specialty": "Species|Houseplant|Ornamental",
|
| 398 |
"reliability": 0.87,
|
| 399 |
"priority": 6,
|
| 400 |
-
"type": "species"
|
| 401 |
-
"is_primary": True
|
| 402 |
-
|
| 403 |
},
|
| 404 |
"Groundcover-Moss-ID": {
|
| 405 |
"model_id": "facebook/deit-base-distilled-patch16-224",
|
| 406 |
"specialty": "Species|Groundcover|Moss|Fern",
|
| 407 |
"reliability": 0.83,
|
| 408 |
"priority": 10,
|
| 409 |
-
"type": "species"
|
| 410 |
-
"is_primary": True
|
| 411 |
},
|
| 412 |
-
"ResNet-152-
|
| 413 |
"model_id": "microsoft/resnet-152",
|
| 414 |
"specialty": "Species|General|Deep",
|
| 415 |
"reliability": 0.89,
|
| 416 |
"priority": 5,
|
| 417 |
-
"type": "species"
|
| 418 |
-
"is_primary": True
|
| 419 |
-
|
| 420 |
},
|
| 421 |
"Tropical-Flora-ID": {
|
| 422 |
"model_id": "facebook/convnext-small-224",
|
| 423 |
"specialty": "Species|Tropical|Rainforest",
|
| 424 |
"reliability": 0.82,
|
| 425 |
"priority": 11,
|
| 426 |
-
"type": "species"
|
| 427 |
-
"is_primary": True
|
| 428 |
-
|
| 429 |
},
|
| 430 |
-
# ❌ תחליף: Weed-Detection-YOLOv8 -> מודל YOLOv8 פעיל
|
| 431 |
"Weed-Detection-YOLOv8": {
|
| 432 |
"model_id": "Taha3000/yolov8s-plant-disease-and-weed-detection",
|
| 433 |
"specialty": "Species|Weed|Detection",
|
| 434 |
"reliability": 0.86,
|
| 435 |
"priority": 7,
|
| 436 |
-
"type": "species"
|
| 437 |
-
"is_primary": True
|
| 438 |
-
},
|
| 439 |
-
|
| 440 |
-
"Flora-Vision-v2": {
|
| 441 |
-
"model_id": "facebook/deit-base-distilled-patch16-224",
|
| 442 |
-
"specialty": "Species|Garden|Agricultural|General",
|
| 443 |
-
"reliability": 0.91,
|
| 444 |
-
"priority": 3,
|
| 445 |
-
"type": "species",
|
| 446 |
-
"is_primary": True
|
| 447 |
},
|
| 448 |
"Crop-Specialist": {
|
| 449 |
"model_id": "google/efficientnet-b3",
|
| 450 |
"specialty": "Species|Crop|Vegetable",
|
| 451 |
"reliability": 0.88,
|
| 452 |
"priority": 5,
|
| 453 |
-
"type": "species"
|
| 454 |
-
|
| 455 |
-
},
|
| 456 |
-
|
| 457 |
-
# ❌ תחליף: Leaf-Pathology-ViT -> מודל ViT פיין-גריינד חלופי
|
| 458 |
"Leaf-Pathology-ViT": {
|
| 459 |
"model_id": "Sayak/vit-base-patch16-224-fine-grained-classification",
|
| 460 |
-
"specialty": "Species|Garden|Fine-Grained
|
| 461 |
"reliability": 0.88,
|
| 462 |
"priority": 5,
|
| 463 |
-
"type": "species"
|
| 464 |
-
"is_primary": True
|
| 465 |
-
|
| 466 |
},
|
| 467 |
-
|
| 468 |
"Efficient-Plant-Id": {
|
| 469 |
"model_id": "google/efficientnet-b4",
|
| 470 |
"specialty": "Species|Efficiency|General",
|
| 471 |
"reliability": 0.89,
|
| 472 |
"priority": 6,
|
| 473 |
-
"type": "species"
|
| 474 |
-
"is_primary": True
|
| 475 |
-
|
| 476 |
},
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
"
|
| 480 |
-
"
|
| 481 |
-
"
|
| 482 |
-
"
|
| 483 |
-
"type": "species",
|
| 484 |
-
"is_specialty": True
|
| 485 |
},
|
| 486 |
-
|
| 487 |
-
"model_id": "facebook/convnext-
|
| 488 |
-
"specialty": "
|
| 489 |
"reliability": 0.90,
|
| 490 |
"priority": 4,
|
| 491 |
-
"type": "species"
|
| 492 |
-
"is_specialty": True
|
| 493 |
},
|
| 494 |
-
|
| 495 |
-
"
|
| 496 |
-
"
|
| 497 |
-
"
|
| 498 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 499 |
"priority": 3,
|
| 500 |
-
"type": "species"
|
| 501 |
-
"is_specialty": True
|
| 502 |
},
|
| 503 |
-
"
|
| 504 |
-
"model_id": "
|
| 505 |
-
"specialty": "Species|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 506 |
"reliability": 0.91,
|
| 507 |
"priority": 3,
|
| 508 |
-
"type": "species"
|
| 509 |
-
"is_specialty": True
|
| 510 |
},
|
| 511 |
-
|
| 512 |
-
"model_id": "
|
| 513 |
-
"specialty": "Species|
|
| 514 |
-
"reliability": 0.
|
| 515 |
-
"priority":
|
| 516 |
-
"type": "species"
|
| 517 |
-
"is_specialty": True
|
| 518 |
-
|
| 519 |
},
|
| 520 |
-
"
|
| 521 |
-
"model_id": "
|
| 522 |
-
"specialty": "
|
| 523 |
-
"reliability": 0.
|
| 524 |
-
"priority":
|
| 525 |
-
"type": "species"
|
| 526 |
-
"is_specialty": True
|
| 527 |
},
|
| 528 |
-
"Desert-Flora
|
| 529 |
"model_id": "google/efficientnet-b2",
|
| 530 |
"specialty": "Species|Cactus|Desert",
|
| 531 |
"reliability": 0.85,
|
| 532 |
"priority": 8,
|
| 533 |
-
"type": "species"
|
| 534 |
-
"is_specialty": True
|
| 535 |
-
},
|
| 536 |
-
"Herb-Medicine-Classifier": {
|
| 537 |
-
"model_id": "microsoft/beit-base-patch16-224-pt22k-ft22k",
|
| 538 |
-
"specialty": "Species|Herb|Medicinal",
|
| 539 |
-
"reliability": 0.86,
|
| 540 |
-
"priority": 7,
|
| 541 |
-
"type": "species",
|
| 542 |
-
"is_specialty": True
|
| 543 |
},
|
| 544 |
-
"
|
| 545 |
-
"model_id": "
|
| 546 |
-
"specialty": "Species|
|
| 547 |
-
"reliability": 0.
|
| 548 |
"priority": 6,
|
| 549 |
-
"type": "species"
|
| 550 |
-
"is_specialty": True
|
| 551 |
},
|
| 552 |
-
"
|
| 553 |
-
"model_id": "facebook/convnext-
|
| 554 |
-
"specialty": "Species|
|
| 555 |
-
"reliability": 0.
|
| 556 |
-
"priority":
|
| 557 |
-
"type": "species"
|
| 558 |
-
"is_specialty": True
|
| 559 |
},
|
| 560 |
|
| 561 |
-
#
|
|
|
|
|
|
|
| 562 |
"ViT-Pathogen-Expert": {
|
| 563 |
"model_id": "google/vit-base-patch16-224",
|
| 564 |
"specialty": "Health|Disease|Pathogen",
|
| 565 |
"reliability": 0.93,
|
| 566 |
"priority": 1,
|
| 567 |
-
"type": "health"
|
| 568 |
-
"is_primary": True
|
| 569 |
-
},
|
| 570 |
-
"Grass-Cereal-Classifier": {
|
| 571 |
-
"model_id": "microsoft/swinv2-base-patch4-window8-256",
|
| 572 |
-
"specialty": "Species|Grass|Cereal|Grain",
|
| 573 |
-
"reliability": 0.84,
|
| 574 |
-
"priority": 9,
|
| 575 |
-
"type": "species",
|
| 576 |
},
|
| 577 |
-
|
| 578 |
-
"model_id": "Taha3000/yolov8s-plant-disease-and-weed-detection",
|
| 579 |
"specialty": "Detection|Weeds|Pests",
|
| 580 |
"reliability": 0.91,
|
| 581 |
"priority": 2,
|
| 582 |
-
"type": "health"
|
| 583 |
-
"is_primary": True
|
| 584 |
},
|
| 585 |
-
|
| 586 |
"Plant-Disease-Swin": {
|
| 587 |
"model_id": "Mahadi-M/swinv2-finetuned-plant-disease-maize",
|
| 588 |
"specialty": "Health|Disease",
|
| 589 |
"reliability": 0.92,
|
| 590 |
"priority": 2,
|
| 591 |
-
"type": "health"
|
| 592 |
-
"is_primary": True
|
| 593 |
},
|
| 594 |
"Crop-Disease-ViT": {
|
| 595 |
"model_id": "wambugu71/crop_leaf_diseases_vit",
|
| 596 |
"specialty": "Health|Disease",
|
| 597 |
"reliability": 0.90,
|
| 598 |
"priority": 3,
|
| 599 |
-
"type": "health"
|
| 600 |
-
"is_primary": True
|
| 601 |
},
|
| 602 |
"Disease-MobileNetV2": {
|
| 603 |
"model_id": "Diginsa/Plant-Disease-Detection-Project",
|
| 604 |
"specialty": "Health|Disease",
|
| 605 |
"reliability": 0.85,
|
| 606 |
"priority": 8,
|
| 607 |
-
"type": "health"
|
| 608 |
-
"is_primary": True
|
| 609 |
},
|
| 610 |
"Nutrient-Deficiency-AI": {
|
| 611 |
"model_id": "google/efficientnet-b4",
|
| 612 |
"specialty": "Health|Deficiency",
|
| 613 |
"reliability": 0.90,
|
| 614 |
"priority": 3,
|
| 615 |
-
"type": "health"
|
| 616 |
-
"is_primary": True
|
| 617 |
},
|
| 618 |
"Leaf-Spot-Detector": {
|
| 619 |
"model_id": "facebook/convnext-base-224-22k",
|
| 620 |
"specialty": "Health|Disease|Spotting",
|
| 621 |
"reliability": 0.91,
|
| 622 |
"priority": 4,
|
| 623 |
-
"type": "health"
|
| 624 |
-
"is_primary": True
|
| 625 |
},
|
| 626 |
-
|
| 627 |
-
# SPECIALTY HEALTH MODELS
|
| 628 |
"Stress-Drought-Analyzer": {
|
| 629 |
"model_id": "microsoft/resnet-101",
|
| 630 |
"specialty": "Health|Stress|Drought",
|
| 631 |
"reliability": 0.89,
|
| 632 |
"priority": 4,
|
| 633 |
-
"type": "health"
|
| 634 |
-
"is_specialty": True
|
| 635 |
},
|
| 636 |
"Fungal-Disease-ConvNext": {
|
| 637 |
"model_id": "facebook/convnext-base-224-22k",
|
| 638 |
"specialty": "Health|Fungi|Disease",
|
| 639 |
"reliability": 0.90,
|
| 640 |
"priority": 4,
|
| 641 |
-
"type": "health"
|
| 642 |
-
"is_specialty": True
|
| 643 |
},
|
| 644 |
"Virus-Infection-ViT": {
|
| 645 |
"model_id": "microsoft/beit-base-patch16-224",
|
| 646 |
"specialty": "Health|Virus|Systemic",
|
| 647 |
"reliability": 0.83,
|
| 648 |
"priority": 10,
|
| 649 |
-
"type": "health"
|
| 650 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 651 |
}
|
| 652 |
}
|
| 653 |
|
| 654 |
# ========================================================
|
| 655 |
-
# SECTION
|
| 656 |
# ========================================================
|
| 657 |
|
| 658 |
def load_weights() -> Dict[str, float]:
|
|
@@ -675,9 +728,9 @@ def save_weights(weights: Dict[str, float]):
|
|
| 675 |
print(f"❌ Failed to save weights: {e}")
|
| 676 |
|
| 677 |
def get_user_location() -> str:
|
| 678 |
-
"""Get approximate location from IP address."""
|
| 679 |
try:
|
| 680 |
-
response =
|
| 681 |
data = response.json()
|
| 682 |
return f"{data.get('city', 'Unknown')}, {data.get('country', 'Unknown')}"
|
| 683 |
except:
|
|
@@ -700,15 +753,11 @@ def is_valid_disease_label(label: str) -> bool:
|
|
| 700 |
return False
|
| 701 |
|
| 702 |
# ========================================================
|
| 703 |
-
# SECTION
|
| 704 |
# ========================================================
|
| 705 |
|
| 706 |
def load_hebrew_llm():
|
| 707 |
-
"""
|
| 708 |
-
Load Hebrew language model for natural text generation.
|
| 709 |
-
Uses mBART-50 which supports Hebrew well.
|
| 710 |
-
Falls back to template-based generation if loading fails.
|
| 711 |
-
"""
|
| 712 |
global HEBREW_LLM_CACHE
|
| 713 |
|
| 714 |
if not AI_AVAILABLE:
|
|
@@ -737,10 +786,7 @@ def load_hebrew_llm():
|
|
| 737 |
|
| 738 |
def generate_hebrew_text_with_llm(plant_name: str, health_status: str,
|
| 739 |
confidence: float) -> str:
|
| 740 |
-
"""
|
| 741 |
-
Generate natural Hebrew text using LLM.
|
| 742 |
-
Falls back to template if LLM unavailable.
|
| 743 |
-
"""
|
| 744 |
llm = load_hebrew_llm()
|
| 745 |
|
| 746 |
if llm is None:
|
|
@@ -807,18 +853,11 @@ def generate_hebrew_summary(plant_name: str, health_status: str, confidence: flo
|
|
| 807 |
return generate_hebrew_text_with_llm(plant_name, health_status, confidence)
|
| 808 |
|
| 809 |
# ========================================================
|
| 810 |
-
# SECTION
|
| 811 |
# ========================================================
|
| 812 |
|
| 813 |
def archive_raw_analysis_data(analysis_data: Dict, image_path: Optional[str] = None) -> bool:
|
| 814 |
-
"""
|
| 815 |
-
Archive complete analysis data to:
|
| 816 |
-
1. Local JSON files
|
| 817 |
-
2. Hugging Face Datasets (if configured)
|
| 818 |
-
|
| 819 |
-
Returns:
|
| 820 |
-
bool: Success status
|
| 821 |
-
"""
|
| 822 |
if not HF_DATASETS_AVAILABLE:
|
| 823 |
print("⚠️ Archiving to local only")
|
| 824 |
|
|
@@ -847,7 +886,7 @@ def archive_raw_analysis_data(analysis_data: Dict, image_path: Optional[str] = N
|
|
| 847 |
|
| 848 |
print(f"✅ Archived: {local_path}")
|
| 849 |
|
| 850 |
-
# Try Hugging Face upload
|
| 851 |
if HUGGING_FACE_TOKEN and HF_DATASETS_AVAILABLE:
|
| 852 |
try:
|
| 853 |
api = HfApi()
|
|
@@ -884,14 +923,11 @@ def load_archived_analyses(limit: int = 10) -> List[Dict]:
|
|
| 884 |
return []
|
| 885 |
|
| 886 |
# ========================================================
|
| 887 |
-
# SECTION
|
| 888 |
# ========================================================
|
| 889 |
|
| 890 |
-
def load_hugging_face_model(model_name: str, repo_id: str, max_retries: int =
|
| 891 |
-
"""
|
| 892 |
-
Load and cache Hugging Face model.
|
| 893 |
-
Uses parallel loading for speed.
|
| 894 |
-
"""
|
| 895 |
global PLANT_MODELS_CACHE
|
| 896 |
|
| 897 |
if not AI_AVAILABLE:
|
|
@@ -919,24 +955,23 @@ def load_hugging_face_model(model_name: str, repo_id: str, max_retries: int = 2)
|
|
| 919 |
time.sleep(2 ** attempt)
|
| 920 |
else:
|
| 921 |
PLANT_MODELS_CACHE[repo_id] = "FAILED"
|
| 922 |
-
print(f"❌ {model_name} failed")
|
| 923 |
return None
|
| 924 |
|
| 925 |
def preload_all_models_parallel():
|
| 926 |
-
"""
|
| 927 |
-
Preload all models in parallel using ThreadPoolExecutor.
|
| 928 |
-
Uses 4 workers for optimal performance.
|
| 929 |
-
"""
|
| 930 |
if not AI_AVAILABLE:
|
| 931 |
return
|
| 932 |
|
| 933 |
-
print("\n🤖 Parallel model loading (
|
| 934 |
|
| 935 |
models_to_load = [(name, details.get("model_id"))
|
| 936 |
for name, details in PLANT_AI_MODELS.items()]
|
| 937 |
|
| 938 |
loaded = 0
|
| 939 |
-
|
|
|
|
|
|
|
| 940 |
futures = {
|
| 941 |
executor.submit(load_hugging_face_model, name, model_id): name
|
| 942 |
for name, model_id in models_to_load
|
|
@@ -944,34 +979,30 @@ def preload_all_models_parallel():
|
|
| 944 |
|
| 945 |
for future in as_completed(futures):
|
| 946 |
try:
|
| 947 |
-
|
|
|
|
| 948 |
loaded += 1
|
|
|
|
|
|
|
| 949 |
except:
|
| 950 |
-
|
| 951 |
|
| 952 |
-
print(f"✅ Loaded {loaded}/{len(models_to_load)} models\n")
|
| 953 |
|
| 954 |
# ========================================================
|
| 955 |
-
# SECTION
|
| 956 |
# ========================================================
|
| 957 |
|
| 958 |
class DataIntegrator:
|
| 959 |
-
"""
|
| 960 |
-
Handles all external data sources:
|
| 961 |
-
- Adafruit IO (11 feeds)
|
| 962 |
-
- Weather API
|
| 963 |
-
- Cloudinary
|
| 964 |
-
|
| 965 |
-
Implements retry logic and fallback strategies.
|
| 966 |
-
"""
|
| 967 |
|
| 968 |
def __init__(self):
|
| 969 |
self.aio = None
|
| 970 |
self.geolocator = None
|
| 971 |
-
self.max_retries =
|
| 972 |
self.retry_delay = 2
|
| 973 |
|
| 974 |
-
# Initialize Adafruit IO
|
| 975 |
if ADAFRUIT_AVAILABLE and ADAFRUIT_IO_USERNAME:
|
| 976 |
for attempt in range(self.max_retries):
|
| 977 |
try:
|
|
@@ -979,10 +1010,10 @@ class DataIntegrator:
|
|
| 979 |
self.aio.feeds()
|
| 980 |
print("✅ Adafruit IO connected")
|
| 981 |
break
|
| 982 |
-
except:
|
| 983 |
if attempt == self.max_retries - 1:
|
| 984 |
-
print("⚠️ Adafruit IO unavailable")
|
| 985 |
-
time.sleep(self.retry_delay)
|
| 986 |
|
| 987 |
# Initialize Geopy
|
| 988 |
if GEOPY_AVAILABLE:
|
|
@@ -992,32 +1023,26 @@ class DataIntegrator:
|
|
| 992 |
except:
|
| 993 |
pass
|
| 994 |
|
| 995 |
-
# Initialize Cloudinary
|
| 996 |
if CLOUDINARY_AVAILABLE and CLOUDINARY_CLOUD_NAME:
|
| 997 |
-
|
| 998 |
-
|
| 999 |
-
|
| 1000 |
-
|
| 1001 |
-
|
| 1002 |
-
|
| 1003 |
-
|
| 1004 |
-
|
| 1005 |
-
|
| 1006 |
-
|
| 1007 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1008 |
|
| 1009 |
def get_all_environmental_data(self, location: Optional[str] = None) -> Dict[str, Any]:
|
| 1010 |
-
"""
|
| 1011 |
-
Aggregate environmental data from multiple sources.
|
| 1012 |
-
|
| 1013 |
-
Priority:
|
| 1014 |
-
1. Try all 11 Adafruit IO feeds
|
| 1015 |
-
2. Fallback to Weather API for location
|
| 1016 |
-
3. Use intelligent defaults
|
| 1017 |
-
|
| 1018 |
-
Returns:
|
| 1019 |
-
Dict with all environmental parameters and sources
|
| 1020 |
-
"""
|
| 1021 |
env_data = {
|
| 1022 |
"temperature": None,
|
| 1023 |
"humidity": None,
|
|
@@ -1064,7 +1089,7 @@ class DataIntegrator:
|
|
| 1064 |
except:
|
| 1065 |
pass
|
| 1066 |
|
| 1067 |
-
# Fallback to Weather API
|
| 1068 |
if location and (env_data["temperature"] is None or env_data["humidity"] is None):
|
| 1069 |
weather = self.get_weather_for_location(location)
|
| 1070 |
if weather:
|
|
@@ -1087,7 +1112,7 @@ class DataIntegrator:
|
|
| 1087 |
return env_data
|
| 1088 |
|
| 1089 |
def get_adafruit_data(self, feed_name: str, limit: int = 100) -> Optional[List[Dict]]:
|
| 1090 |
-
"""Fetch data from Adafruit IO with retry."""
|
| 1091 |
if not self.aio:
|
| 1092 |
return None
|
| 1093 |
|
|
@@ -1095,82 +1120,92 @@ class DataIntegrator:
|
|
| 1095 |
try:
|
| 1096 |
feed = self.aio.feeds(feed_name)
|
| 1097 |
return self.aio.data(feed.key, max_results=limit)
|
| 1098 |
-
except:
|
| 1099 |
if attempt < self.max_retries - 1:
|
| 1100 |
-
time.sleep(self.retry_delay * (
|
|
|
|
|
|
|
| 1101 |
return None
|
| 1102 |
|
| 1103 |
def post_adafruit_data(self, feed_name: str, value: Any) -> bool:
|
| 1104 |
-
"""Post data to Adafruit IO."""
|
| 1105 |
if not self.aio:
|
| 1106 |
return False
|
| 1107 |
|
| 1108 |
-
|
| 1109 |
-
|
| 1110 |
-
|
| 1111 |
-
|
| 1112 |
-
|
| 1113 |
-
|
|
|
|
|
|
|
|
|
|
| 1114 |
|
| 1115 |
def get_weather_for_location(self, location: str) -> Optional[Dict]:
|
| 1116 |
-
"""Fetch weather from OpenWeatherMap API."""
|
| 1117 |
if not WEATHER_API_KEY:
|
| 1118 |
return None
|
| 1119 |
|
| 1120 |
-
|
| 1121 |
-
|
| 1122 |
-
|
| 1123 |
-
|
| 1124 |
-
|
| 1125 |
-
|
| 1126 |
-
|
| 1127 |
-
|
| 1128 |
-
|
| 1129 |
-
|
| 1130 |
-
|
| 1131 |
-
|
| 1132 |
-
|
| 1133 |
-
|
| 1134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1135 |
|
| 1136 |
def get_cloudinary_images(self, count: int = 20) -> List[Dict]:
|
| 1137 |
-
"""Fetch images from Cloudinary."""
|
| 1138 |
if not CLOUDINARY_AVAILABLE:
|
| 1139 |
return []
|
| 1140 |
|
| 1141 |
-
|
| 1142 |
-
|
| 1143 |
-
|
| 1144 |
-
|
| 1145 |
-
|
| 1146 |
-
|
| 1147 |
-
|
| 1148 |
-
|
| 1149 |
-
|
| 1150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1151 |
|
| 1152 |
# Initialize global data integrator
|
| 1153 |
data_integrator = DataIntegrator()
|
| 1154 |
|
| 1155 |
# ========================================================
|
| 1156 |
-
# SECTION
|
| 1157 |
# ========================================================
|
| 1158 |
|
| 1159 |
-
def
|
| 1160 |
"""
|
| 1161 |
-
Complete AI consensus analysis.
|
| 1162 |
|
| 1163 |
Process:
|
| 1164 |
-
1. Run
|
| 1165 |
-
2.
|
| 1166 |
-
3.
|
| 1167 |
-
4.
|
| 1168 |
-
5.
|
| 1169 |
-
6. Generate Hebrew summary
|
| 1170 |
-
|
| 1171 |
-
Args:
|
| 1172 |
-
image_path: Path to plant image
|
| 1173 |
-
location: Optional location for environmental data
|
| 1174 |
|
| 1175 |
Returns:
|
| 1176 |
Tuple of (summary_text, detailed_analysis_dict)
|
|
@@ -1187,23 +1222,35 @@ def run_dual_consensus_enhanced(image_path: str, location: Optional[str] = None)
|
|
| 1187 |
health_predictions_all = []
|
| 1188 |
|
| 1189 |
print("\n" + "=" * 60)
|
| 1190 |
-
print("🔬
|
| 1191 |
print("=" * 60)
|
| 1192 |
|
| 1193 |
-
# PHASE 1:
|
| 1194 |
-
print("\n📊 Phase 1:
|
| 1195 |
print("-" * 60)
|
| 1196 |
|
| 1197 |
-
|
| 1198 |
-
if details.get("type") == "species"
|
|
|
|
|
|
|
|
|
|
| 1199 |
|
| 1200 |
-
for model_name, details in
|
| 1201 |
classifier = load_hugging_face_model(model_name, details.get("model_id"))
|
| 1202 |
if not classifier:
|
| 1203 |
continue
|
| 1204 |
|
| 1205 |
try:
|
| 1206 |
predictions = classifier(image_path, top_k=5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1207 |
for pred in predictions:
|
| 1208 |
label = pred['label'].lower()
|
| 1209 |
if any(kw in label for kw in NON_PLANT_KEYWORDS):
|
|
@@ -1213,52 +1260,20 @@ def run_dual_consensus_enhanced(image_path: str, location: Optional[str] = None)
|
|
| 1213 |
reliability = details.get("reliability", 1.0)
|
| 1214 |
score = pred['score'] * weight * reliability
|
| 1215 |
plant_scores[label] += score
|
| 1216 |
-
print(f" • {model_name}: {label} ({score:.4f})")
|
| 1217 |
-
except Exception as e:
|
| 1218 |
-
print(f" ⚠️ {model_name} error")
|
| 1219 |
-
|
| 1220 |
-
# Check if specialty models needed
|
| 1221 |
-
use_specialty = False
|
| 1222 |
-
if plant_scores:
|
| 1223 |
-
top_plant = max(plant_scores, key=plant_scores.get)
|
| 1224 |
-
total = sum(plant_scores.values())
|
| 1225 |
-
confidence = plant_scores[top_plant] / total if total > 0 else 0
|
| 1226 |
-
|
| 1227 |
-
if confidence < 0.70:
|
| 1228 |
-
use_specialty = True
|
| 1229 |
-
print(f"\n🔍 Low confidence ({confidence:.1%}) - Activating Specialty Models")
|
| 1230 |
-
print("-" * 60)
|
| 1231 |
-
|
| 1232 |
-
specialty_models = {name: details for name, details in PLANT_AI_MODELS.items()
|
| 1233 |
-
if details.get("type") == "species" and details.get("is_specialty")}
|
| 1234 |
-
|
| 1235 |
-
for model_name, details in specialty_models.items():
|
| 1236 |
-
classifier = load_hugging_face_model(model_name, details.get("model_id"))
|
| 1237 |
-
if not classifier:
|
| 1238 |
-
continue
|
| 1239 |
|
| 1240 |
-
|
| 1241 |
-
|
| 1242 |
-
|
| 1243 |
-
|
| 1244 |
-
if any(kw in label for kw in NON_PLANT_KEYWORDS):
|
| 1245 |
-
continue
|
| 1246 |
-
|
| 1247 |
-
weight = MODEL_WEIGHTS.get(model_name, 1.0)
|
| 1248 |
-
reliability = details.get("reliability", 1.0)
|
| 1249 |
-
score = pred['score'] * weight * reliability * 1.2
|
| 1250 |
-
plant_scores[label] += score
|
| 1251 |
-
print(f" • {model_name}: {label} ({score:.4f})")
|
| 1252 |
-
except:
|
| 1253 |
-
pass
|
| 1254 |
|
| 1255 |
-
# PHASE 2: Health
|
| 1256 |
-
print("\n🩺 Phase 2: Health Analysis (Top-5
|
| 1257 |
print("-" * 60)
|
| 1258 |
|
| 1259 |
health_models = {name: details for name, details in PLANT_AI_MODELS.items()
|
| 1260 |
if details.get("type") == "health"}
|
| 1261 |
|
|
|
|
| 1262 |
for model_name, details in health_models.items():
|
| 1263 |
classifier = load_hugging_face_model(model_name, details.get("model_id"))
|
| 1264 |
if not classifier:
|
|
@@ -1283,9 +1298,11 @@ def run_dual_consensus_enhanced(image_path: str, location: Optional[str] = None)
|
|
| 1283 |
"confidence": pred['score'],
|
| 1284 |
"model": model_name
|
| 1285 |
})
|
| 1286 |
-
|
| 1287 |
-
|
| 1288 |
-
|
|
|
|
|
|
|
| 1289 |
|
| 1290 |
# Aggregate health predictions
|
| 1291 |
health_aggregated = defaultdict(lambda: {"total_score": 0, "count": 0, "max_conf": 0})
|
|
@@ -1331,12 +1348,9 @@ def run_dual_consensus_enhanced(image_path: str, location: Optional[str] = None)
|
|
| 1331 |
top_health = health_results[0]["condition"] if health_results else "Healthy"
|
| 1332 |
hebrew_summary = generate_hebrew_summary(top_plant, top_health, plant_conf)
|
| 1333 |
|
| 1334 |
-
species_count = len(primary_models) + (len({k: v for k, v in PLANT_AI_MODELS.items()
|
| 1335 |
-
if v.get("type") == "species" and v.get("is_specialty")}) if use_specialty else 0)
|
| 1336 |
-
|
| 1337 |
print(f"\n✅ Results:")
|
| 1338 |
print(f" Plant: {top_plant} ({plant_conf:.2%})")
|
| 1339 |
-
print(f" Models: {species_count} species + {
|
| 1340 |
print("=" * 60 + "\n")
|
| 1341 |
|
| 1342 |
return f"**Identified:** {top_plant}", {
|
|
@@ -1347,12 +1361,13 @@ def run_dual_consensus_enhanced(image_path: str, location: Optional[str] = None)
|
|
| 1347 |
"image_path": image_path,
|
| 1348 |
"env_data": env_data,
|
| 1349 |
"hebrew_summary": hebrew_summary,
|
| 1350 |
-
"total_models_used": species_count +
|
| 1351 |
-
"
|
|
|
|
| 1352 |
}
|
| 1353 |
|
| 1354 |
# ========================================================
|
| 1355 |
-
# SECTION
|
| 1356 |
# ========================================================
|
| 1357 |
|
| 1358 |
def analyze_plant_image_enhanced(image_path: str, location: Optional[str] = None) -> Tuple[str, List, float, str]:
|
|
@@ -1362,7 +1377,7 @@ def analyze_plant_image_enhanced(image_path: str, location: Optional[str] = None
|
|
| 1362 |
if not image_path:
|
| 1363 |
return "⚠️ Please upload an image", [], 0.0, ""
|
| 1364 |
|
| 1365 |
-
final_text, analysis_details =
|
| 1366 |
last_analysis_details = analysis_details
|
| 1367 |
|
| 1368 |
plant_name = analysis_details.get("plant_prediction", "Unknown")
|
|
@@ -1370,7 +1385,8 @@ def analyze_plant_image_enhanced(image_path: str, location: Optional[str] = None
|
|
| 1370 |
health_preds = analysis_details.get("health_predictions", [])
|
| 1371 |
env_data = analysis_details.get("env_data")
|
| 1372 |
total_models = analysis_details.get("total_models_used", 0)
|
| 1373 |
-
|
|
|
|
| 1374 |
|
| 1375 |
top_health = health_preds[0]["condition"] if health_preds else "Healthy"
|
| 1376 |
hebrew_summary = generate_hebrew_summary(plant_name, top_health, plant_conf)
|
|
@@ -1385,8 +1401,9 @@ def analyze_plant_image_enhanced(image_path: str, location: Optional[str] = None
|
|
| 1385 |
### 🔬 Plant Identification
|
| 1386 |
**{plant_name}**
|
| 1387 |
📊 Confidence: {plant_conf:.1%}
|
| 1388 |
-
🤖 Models
|
| 1389 |
-
|
|
|
|
| 1390 |
|
| 1391 |
### 🩺 Top-5 Health Predictions
|
| 1392 |
"""
|
|
@@ -1396,7 +1413,8 @@ def analyze_plant_image_enhanced(image_path: str, location: Optional[str] = None
|
|
| 1396 |
output_text += f"""
|
| 1397 |
**{i}. {pred['condition']}**
|
| 1398 |
• Confidence: {pred['confidence']:.1%}
|
| 1399 |
-
• Agreement: {pred['model_count']} models
|
|
|
|
| 1400 |
"""
|
| 1401 |
else:
|
| 1402 |
output_text += "\n✅ **No diseases detected**\n"
|
|
@@ -1412,6 +1430,8 @@ def analyze_plant_image_enhanced(image_path: str, location: Optional[str] = None
|
|
| 1412 |
output_text += f"• 💧 Humidity: {env_data['humidity']:.1f}%\n"
|
| 1413 |
if env_data.get('soil_moisture'):
|
| 1414 |
output_text += f"• 🌱 Soil Moisture: {env_data['soil_moisture']:.1f}\n"
|
|
|
|
|
|
|
| 1415 |
|
| 1416 |
output_text += f"\n📡 Sources: {', '.join(env_data['sources'][:3])}\n"
|
| 1417 |
|
|
@@ -1421,7 +1441,7 @@ def analyze_plant_image_enhanced(image_path: str, location: Optional[str] = None
|
|
| 1421 |
return output_text, [], plant_conf * 100, hebrew_summary
|
| 1422 |
|
| 1423 |
def get_sensor_weather_data_enhanced(city: str) -> str:
|
| 1424 |
-
"""Get comprehensive environmental data."""
|
| 1425 |
env_data = data_integrator.get_all_environmental_data(city)
|
| 1426 |
|
| 1427 |
output = "## 🌍 Environmental Data\n\n"
|
|
@@ -1432,19 +1452,25 @@ def get_sensor_weather_data_enhanced(city: str) -> str:
|
|
| 1432 |
output += f"💧 **Humidity:** {env_data['humidity']:.1f}%\n"
|
| 1433 |
if env_data.get('soil_moisture'):
|
| 1434 |
output += f"🌱 **Soil Moisture:** {env_data['soil_moisture']:.1f}\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1435 |
|
| 1436 |
output += f"\n📡 **Sources:** {', '.join(env_data.get('sources', ['None']))}\n"
|
| 1437 |
|
| 1438 |
return output
|
| 1439 |
|
| 1440 |
def run_prophet_forecast() -> Tuple[str, Any]:
|
| 1441 |
-
"""Generate temperature forecast."""
|
| 1442 |
if not PROPHET_AVAILABLE:
|
| 1443 |
return "❌ Prophet not installed", None
|
| 1444 |
|
| 1445 |
temp_data = data_integrator.get_adafruit_data(ADAFRUIT_FEEDS["temperature"], limit=100)
|
| 1446 |
if not temp_data or len(temp_data) < 10:
|
| 1447 |
-
return "⚠️ Insufficient data", None
|
| 1448 |
|
| 1449 |
try:
|
| 1450 |
df = pd.DataFrame([
|
|
@@ -1461,49 +1487,60 @@ def run_prophet_forecast() -> Tuple[str, Any]:
|
|
| 1461 |
|
| 1462 |
fig = m.plot(forecast)
|
| 1463 |
plt.title("Temperature Forecast - 30 Days")
|
|
|
|
| 1464 |
|
| 1465 |
-
return f"✅ Forecast from {len(df)} points", fig
|
| 1466 |
-
except:
|
| 1467 |
-
return "❌ Forecast error", None
|
| 1468 |
|
| 1469 |
def send_robot_command(command: str) -> str:
|
| 1470 |
-
"""Send command via Telegram."""
|
| 1471 |
if not TELEGRAM_BOT_TOKEN:
|
| 1472 |
return "❌ Telegram not configured"
|
| 1473 |
|
| 1474 |
try:
|
| 1475 |
url = f"https://api.telegram.org/bot{TELEGRAM_BOT_TOKEN}/sendMessage"
|
| 1476 |
-
response =
|
| 1477 |
-
|
| 1478 |
-
|
| 1479 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1480 |
|
| 1481 |
def refresh_cloudinary_images_interface() -> Tuple[str, List]:
|
| 1482 |
-
"""Refresh image gallery."""
|
| 1483 |
images = data_integrator.get_cloudinary_images(20)
|
| 1484 |
if not images:
|
| 1485 |
-
return "⚠️ No images found", []
|
| 1486 |
|
| 1487 |
image_list = [(img.get('secure_url'), f"📅 {img.get('created_at', 'Unknown')[:10]}")
|
| 1488 |
for img in images if img.get('secure_url')]
|
| 1489 |
|
| 1490 |
-
return f"✅ Loaded {len(image_list)} images", image_list
|
| 1491 |
|
| 1492 |
def save_plant_definition(image_path: str, plant_name: str) -> str:
|
| 1493 |
"""Save user correction and update model weights."""
|
| 1494 |
global last_analysis_details, MODEL_WEIGHTS
|
| 1495 |
|
| 1496 |
if not image_path or not plant_name or not last_analysis_details:
|
| 1497 |
-
return "⚠️ Missing data"
|
| 1498 |
|
| 1499 |
# Update weights (reward correct models)
|
| 1500 |
correct_plant = plant_name.lower()
|
|
|
|
|
|
|
| 1501 |
for model_name in PLANT_AI_MODELS:
|
| 1502 |
if PLANT_AI_MODELS[model_name].get("type") == "species":
|
| 1503 |
if correct_plant in last_analysis_details.get("plant_scores", {}):
|
| 1504 |
-
MODEL_WEIGHTS[model_name] = MODEL_WEIGHTS.get(model_name, 1.0) * 1.1
|
|
|
|
| 1505 |
else:
|
| 1506 |
-
MODEL_WEIGHTS[model_name] = MODEL_WEIGHTS.get(model_name, 1.0) * 0.95
|
| 1507 |
|
| 1508 |
save_weights(MODEL_WEIGHTS)
|
| 1509 |
|
|
@@ -1511,14 +1548,26 @@ def save_plant_definition(image_path: str, plant_name: str) -> str:
|
|
| 1511 |
correction_data = {
|
| 1512 |
"user_correction": plant_name,
|
| 1513 |
"original": last_analysis_details.get("plant_prediction"),
|
| 1514 |
-
"timestamp": datetime.now().isoformat()
|
|
|
|
| 1515 |
}
|
| 1516 |
-
data_integrator.post_adafruit_data(ADAFRUIT_FEEDS["user_corrections"], json.dumps(correction_data))
|
| 1517 |
|
| 1518 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1519 |
|
| 1520 |
# ========================================================
|
| 1521 |
-
# SECTION
|
| 1522 |
# ========================================================
|
| 1523 |
|
| 1524 |
def create_gradio_app():
|
|
@@ -1533,15 +1582,15 @@ def create_gradio_app():
|
|
| 1533 |
body_background_fill="#546E7A",
|
| 1534 |
button_primary_background_fill="#2d5016",
|
| 1535 |
button_primary_background_fill_hover="#4a7c2c",
|
| 1536 |
-
button_primary_text_color="
|
| 1537 |
)
|
| 1538 |
|
| 1539 |
-
with gr.Blocks(theme=theme, css=CUSTOM_CSS, title="PLANETYOYO AI
|
| 1540 |
|
| 1541 |
gr.HTML("""
|
| 1542 |
<div class="header-banner">
|
| 1543 |
-
<h1>🌱 PLANETYOYO AI Professional
|
| 1544 |
-
<p>
|
| 1545 |
</div>
|
| 1546 |
""")
|
| 1547 |
|
|
@@ -1550,16 +1599,31 @@ def create_gradio_app():
|
|
| 1550 |
with gr.Tab("🔬 Analysis / ניתוח"):
|
| 1551 |
with gr.Row():
|
| 1552 |
with gr.Column(scale=1):
|
| 1553 |
-
image_input = gr.Image(type="filepath", label="Plant Image", height=400)
|
| 1554 |
-
location_input = gr.Textbox(
|
| 1555 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1556 |
|
| 1557 |
with gr.Column(scale=1):
|
| 1558 |
-
confidence_slider = gr.Slider(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1559 |
output_text = gr.Markdown()
|
| 1560 |
|
| 1561 |
with gr.Row():
|
| 1562 |
-
hebrew_output = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1563 |
|
| 1564 |
analyze_btn.click(
|
| 1565 |
fn=analyze_plant_image_enhanced,
|
|
@@ -1567,132 +1631,282 @@ def create_gradio_app():
|
|
| 1567 |
outputs=[output_text, gr.Gallery(visible=False), confidence_slider, hebrew_output]
|
| 1568 |
)
|
| 1569 |
|
| 1570 |
-
# TAB 2: Environmental
|
| 1571 |
with gr.Tab("📊 Environment / סביבה"):
|
|
|
|
|
|
|
| 1572 |
with gr.Row():
|
| 1573 |
-
city_input = gr.Textbox(
|
| 1574 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1575 |
|
| 1576 |
sensor_output = gr.Markdown()
|
| 1577 |
-
refresh_btn.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1578 |
|
| 1579 |
gr.Markdown("---")
|
| 1580 |
-
|
| 1581 |
-
|
| 1582 |
-
|
| 1583 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1584 |
|
| 1585 |
# TAB 3: Archive
|
| 1586 |
with gr.Tab("💾 Archive / ארכיון"):
|
| 1587 |
-
gr.Markdown("### Analysis History")
|
| 1588 |
-
|
|
|
|
| 1589 |
archive_status = gr.Markdown()
|
| 1590 |
-
archive_table = gr.DataFrame(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1591 |
|
| 1592 |
def load_archive(limit=10):
|
| 1593 |
analyses = load_archived_analyses(limit)
|
| 1594 |
if not analyses:
|
| 1595 |
-
return "⚠️ No data", pd.DataFrame()
|
|
|
|
| 1596 |
df = pd.DataFrame([{
|
| 1597 |
"Timestamp": a.get("timestamp", "")[:19],
|
| 1598 |
-
"Plant": a.get("plant_prediction", ""),
|
| 1599 |
-
"Confidence": f"{a.get('plant_confidence', 0)*100:.1f}%"
|
|
|
|
| 1600 |
} for a in analyses])
|
| 1601 |
-
|
|
|
|
|
|
|
|
|
|
| 1602 |
|
| 1603 |
-
refresh_archive_btn.click(
|
|
|
|
|
|
|
|
|
|
| 1604 |
|
| 1605 |
-
# TAB 4: Robot
|
| 1606 |
-
with gr.Tab("🤖 Robot Control"):
|
| 1607 |
-
|
| 1608 |
-
|
| 1609 |
-
|
| 1610 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1611 |
|
| 1612 |
# TAB 5: Gallery
|
| 1613 |
-
with gr.Tab("🖼️ Gallery"):
|
| 1614 |
-
|
| 1615 |
-
|
| 1616 |
-
|
| 1617 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1618 |
|
| 1619 |
-
gr.Markdown("---\n### Manual Training")
|
| 1620 |
with gr.Row():
|
| 1621 |
-
manual_image = gr.Image(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1622 |
with gr.Column():
|
| 1623 |
-
correction_input = gr.Textbox(
|
| 1624 |
-
|
| 1625 |
-
|
|
|
|
|
|
|
|
|
|
| 1626 |
|
| 1627 |
-
save_btn.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1628 |
|
| 1629 |
# TAB 6: System Info
|
| 1630 |
-
with gr.Tab("ℹ️ System Info"):
|
| 1631 |
-
hebrew_llm_status = "✅ Loaded" if HEBREW_LLM_CACHE else "
|
|
|
|
|
|
|
|
|
|
| 1632 |
|
| 1633 |
info = f"""
|
| 1634 |
-
## 🌱 PLANETYOYO AI
|
| 1635 |
-
|
| 1636 |
-
### Status
|
| 1637 |
-
|
| 1638 |
-
|
| 1639 |
-
|
| 1640 |
-
|
| 1641 |
-
|
| 1642 |
-
|
| 1643 |
-
|
| 1644 |
-
|
| 1645 |
-
|
| 1646 |
-
|
| 1647 |
-
|
| 1648 |
-
|
| 1649 |
-
|
| 1650 |
-
|
| 1651 |
-
|
| 1652 |
-
|
| 1653 |
-
|
| 1654 |
-
|
| 1655 |
-
|
| 1656 |
-
✅
|
| 1657 |
-
✅
|
| 1658 |
-
✅
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1659 |
"""
|
| 1660 |
gr.Markdown(info)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1661 |
|
| 1662 |
gr.HTML("""
|
| 1663 |
<div class="footer">
|
| 1664 |
-
<p><strong>🌱 PLANETYOYO AI
|
| 1665 |
-
<p>Professional Plant Analysis System</p>
|
|
|
|
|
|
|
|
|
|
| 1666 |
</div>
|
| 1667 |
""")
|
| 1668 |
|
| 1669 |
return app
|
| 1670 |
|
| 1671 |
# ========================================================
|
| 1672 |
-
# SECTION
|
| 1673 |
# ========================================================
|
| 1674 |
|
| 1675 |
if __name__ == "__main__":
|
| 1676 |
print("\n" + "=" * 80)
|
| 1677 |
-
print(" " *
|
| 1678 |
-
print(" " *
|
| 1679 |
print("=" * 80)
|
| 1680 |
print(f"\n⏰ Startup: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
|
| 1681 |
|
| 1682 |
print("📊 System Check:")
|
| 1683 |
-
print(f" • AI: {'✅' if AI_AVAILABLE else '❌'}")
|
| 1684 |
print(f" • Device: {device.upper()}")
|
| 1685 |
-
print(f" • Models: {len(PLANT_AI_MODELS)}")
|
| 1686 |
-
print(f" •
|
|
|
|
|
|
|
|
|
|
| 1687 |
|
| 1688 |
MODEL_WEIGHTS = load_weights()
|
|
|
|
| 1689 |
|
| 1690 |
if AI_AVAILABLE:
|
| 1691 |
-
print("\n🤖 Loading models (
|
| 1692 |
preload_all_models_parallel()
|
|
|
|
| 1693 |
|
| 1694 |
-
print("\n🚀 Launching interface...")
|
| 1695 |
print("=" * 80 + "\n")
|
| 1696 |
|
| 1697 |
app = create_gradio_app()
|
| 1698 |
-
app.launch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
PLANETYOYO AI Ultimate v22.0 - Professional Plant Analysis System
|
| 4 |
==================================================================
|
| 5 |
|
| 6 |
Features:
|
| 7 |
---------
|
| 8 |
+
1. Complete AI Consensus (50 ACTIVE models - ALL USED!)
|
| 9 |
2. Top-5 Disease Predictions
|
| 10 |
+
3. Multi-source Environmental Data (Enhanced Retry Logic)
|
| 11 |
4. Hebrew Language Model Integration
|
| 12 |
5. Raw Data Archiving to Hugging Face
|
| 13 |
6. Professional UI Design
|
| 14 |
+
7. IoT Integration (Adafruit, Telegram) - Improved
|
| 15 |
8. Batch Processing & Forecasting
|
| 16 |
|
| 17 |
Author: PLANETYOYO Team
|
| 18 |
License: MIT
|
| 19 |
+
Version: 22.0 - Enhanced Edition
|
| 20 |
"""
|
| 21 |
|
| 22 |
import subprocess
|
|
|
|
| 26 |
import time
|
| 27 |
import json
|
| 28 |
import requests
|
| 29 |
+
from requests.adapters import HTTPAdapter
|
| 30 |
+
from urllib3.util.retry import Retry
|
| 31 |
import shutil
|
| 32 |
import csv
|
| 33 |
from datetime import datetime, timedelta
|
|
|
|
| 39 |
# ========================================================
|
| 40 |
|
| 41 |
def install_package(package_name: str, import_name: str = None):
|
| 42 |
+
"""Install Python package if not available."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
if import_name is None:
|
| 44 |
import_name = package_name
|
| 45 |
|
|
|
|
| 197 |
]
|
| 198 |
|
| 199 |
# ========================================================
|
| 200 |
+
# SECTION 4: ENHANCED REQUESTS SESSION WITH RETRY
|
| 201 |
+
# ========================================================
|
| 202 |
+
|
| 203 |
+
def create_requests_session(retries=5, backoff_factor=1.0, timeout=30):
|
| 204 |
+
"""
|
| 205 |
+
Create a requests session with automatic retry logic.
|
| 206 |
+
|
| 207 |
+
Args:
|
| 208 |
+
retries: Number of retry attempts
|
| 209 |
+
backoff_factor: Exponential backoff multiplier
|
| 210 |
+
timeout: Default timeout for requests
|
| 211 |
+
|
| 212 |
+
Returns:
|
| 213 |
+
Configured requests.Session object
|
| 214 |
+
"""
|
| 215 |
+
session = requests.Session()
|
| 216 |
+
|
| 217 |
+
retry_strategy = Retry(
|
| 218 |
+
total=retries,
|
| 219 |
+
backoff_factor=backoff_factor,
|
| 220 |
+
status_forcelist=[429, 500, 502, 503, 504],
|
| 221 |
+
allowed_methods=["HEAD", "GET", "POST", "PUT", "DELETE", "OPTIONS", "TRACE"]
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
adapter = HTTPAdapter(max_retries=retry_strategy)
|
| 225 |
+
session.mount("http://", adapter)
|
| 226 |
+
session.mount("https://", adapter)
|
| 227 |
+
|
| 228 |
+
return session
|
| 229 |
+
|
| 230 |
+
# Global enhanced session
|
| 231 |
+
ENHANCED_SESSION = create_requests_session()
|
| 232 |
+
|
| 233 |
+
# ========================================================
|
| 234 |
+
# SECTION 5: PROFESSIONAL UI CSS
|
| 235 |
# ========================================================
|
| 236 |
|
| 237 |
CUSTOM_CSS = """
|
|
|
|
| 252 |
}
|
| 253 |
|
| 254 |
body {
|
| 255 |
+
background: var(--bg);
|
| 256 |
+
color: var(--text);
|
| 257 |
font-family: 'Segoe UI', system-ui, sans-serif;
|
| 258 |
}
|
| 259 |
|
|
|
|
| 262 |
margin: 0 auto;
|
| 263 |
}
|
| 264 |
|
|
|
|
| 265 |
.header-banner {
|
| 266 |
background: linear-gradient(135deg, var(--primary) 0%, var(--primary-light) 100%);
|
| 267 |
color: white;
|
|
|
|
| 277 |
font-weight: 600;
|
| 278 |
}
|
| 279 |
|
|
|
|
| 280 |
button.primary {
|
| 281 |
background: var(--primary) !important;
|
| 282 |
color: white !important;
|
|
|
|
| 293 |
box-shadow: 0 4px 8px rgba(0,0,0,0.2);
|
| 294 |
}
|
| 295 |
|
|
|
|
| 296 |
input, textarea, select {
|
| 297 |
border: 2px solid var(--border) !important;
|
| 298 |
border-radius: 8px !important;
|
|
|
|
| 304 |
box-shadow: 0 0 0 3px rgba(45, 80, 22, 0.1) !important;
|
| 305 |
}
|
| 306 |
|
|
|
|
| 307 |
.card {
|
| 308 |
background: var(--surface);
|
| 309 |
border: 1px solid var(--border);
|
|
|
|
| 312 |
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
|
| 313 |
}
|
| 314 |
|
|
|
|
| 315 |
.hebrew-text {
|
| 316 |
direction: rtl;
|
| 317 |
text-align: right;
|
|
|
|
| 321 |
border: 2px solid var(--accent);
|
| 322 |
}
|
| 323 |
|
|
|
|
| 324 |
.footer {
|
| 325 |
text-align: center;
|
| 326 |
padding: 2rem;
|
|
|
|
| 331 |
"""
|
| 332 |
|
| 333 |
# ========================================================
|
| 334 |
+
# SECTION 6: GLOBAL STATE VARIABLES
|
| 335 |
# ========================================================
|
| 336 |
|
| 337 |
PLANT_MODELS_CACHE = {}
|
|
|
|
| 341 |
last_analysis_details: Optional[Dict] = None
|
| 342 |
|
| 343 |
# ========================================================
|
| 344 |
+
# SECTION 7: AI MODELS CONFIGURATION (50 ACTIVE MODELS)
|
| 345 |
# ========================================================
|
| 346 |
|
| 347 |
PLANT_AI_MODELS = {
|
| 348 |
+
# ==========================================
|
| 349 |
+
# SPECIES IDENTIFICATION MODELS (30 models - ALL ACTIVE)
|
| 350 |
+
# ==========================================
|
| 351 |
"PlantNet-Species-Expert": {
|
| 352 |
"model_id": "google/vit-large-patch16-224-in21k",
|
| 353 |
"specialty": "Species|Taxonomy|Fine-Grained",
|
| 354 |
"reliability": 0.95,
|
| 355 |
"priority": 1,
|
| 356 |
+
"type": "species"
|
|
|
|
| 357 |
},
|
| 358 |
"Flora-Vision-v2": {
|
| 359 |
"model_id": "facebook/deit-base-distilled-patch16-224",
|
| 360 |
"specialty": "Species|Garden|Agricultural",
|
| 361 |
"reliability": 0.91,
|
| 362 |
"priority": 3,
|
| 363 |
+
"type": "species"
|
|
|
|
| 364 |
},
|
| 365 |
"Flower-Classify": {
|
| 366 |
"model_id": "facebook/convnext-base-224-22k",
|
| 367 |
"specialty": "Species|Flower|Herbs",
|
| 368 |
"reliability": 0.92,
|
| 369 |
"priority": 3,
|
| 370 |
+
"type": "species"
|
|
|
|
| 371 |
},
|
| 372 |
"Solana-Detect-v1": {
|
| 373 |
"model_id": "Sharan007/ViT-Base-Patch16-224-FineTuned-PlantVillage",
|
| 374 |
"specialty": "Family|Species|Crops",
|
| 375 |
"reliability": 0.94,
|
| 376 |
"priority": 2,
|
| 377 |
+
"type": "species"
|
|
|
|
| 378 |
},
|
| 379 |
"Tree-Identifier-Pro": {
|
| 380 |
"model_id": "microsoft/resnet-50",
|
| 381 |
"specialty": "Species|Tree",
|
| 382 |
"reliability": 0.89,
|
| 383 |
"priority": 4,
|
| 384 |
+
"type": "species"
|
|
|
|
|
|
|
| 385 |
},
|
| 386 |
"Flower-Morphology-Expert": {
|
| 387 |
"model_id": "facebook/convnext-base-224-22k-1k",
|
| 388 |
"specialty": "Species|Flower",
|
| 389 |
"reliability": 0.87,
|
| 390 |
"priority": 6,
|
| 391 |
+
"type": "species"
|
|
|
|
|
|
|
| 392 |
},
|
| 393 |
"Herb-Medicine-Classifier": {
|
| 394 |
"model_id": "microsoft/beit-base-patch16-224-pt22k-ft22k",
|
| 395 |
"specialty": "Species|Herb|Medicinal",
|
| 396 |
"reliability": 0.86,
|
| 397 |
"priority": 7,
|
| 398 |
+
"type": "species"
|
|
|
|
|
|
|
| 399 |
},
|
| 400 |
"Fruit-Ripeness-ViT": {
|
| 401 |
"model_id": "google/vit-large-patch16-224",
|
| 402 |
"specialty": "Species|Fruit|Ripeness",
|
| 403 |
"reliability": 0.91,
|
| 404 |
"priority": 3,
|
| 405 |
+
"type": "species"
|
|
|
|
|
|
|
| 406 |
},
|
| 407 |
"Ornamental-EfficientNet": {
|
| 408 |
"model_id": "google/efficientnet-b3",
|
| 409 |
"specialty": "Species|Houseplant|Ornamental",
|
| 410 |
"reliability": 0.87,
|
| 411 |
"priority": 6,
|
| 412 |
+
"type": "species"
|
|
|
|
|
|
|
| 413 |
},
|
| 414 |
"Groundcover-Moss-ID": {
|
| 415 |
"model_id": "facebook/deit-base-distilled-patch16-224",
|
| 416 |
"specialty": "Species|Groundcover|Moss|Fern",
|
| 417 |
"reliability": 0.83,
|
| 418 |
"priority": 10,
|
| 419 |
+
"type": "species"
|
|
|
|
| 420 |
},
|
| 421 |
+
"ResNet-152-Deep": {
|
| 422 |
"model_id": "microsoft/resnet-152",
|
| 423 |
"specialty": "Species|General|Deep",
|
| 424 |
"reliability": 0.89,
|
| 425 |
"priority": 5,
|
| 426 |
+
"type": "species"
|
|
|
|
|
|
|
| 427 |
},
|
| 428 |
"Tropical-Flora-ID": {
|
| 429 |
"model_id": "facebook/convnext-small-224",
|
| 430 |
"specialty": "Species|Tropical|Rainforest",
|
| 431 |
"reliability": 0.82,
|
| 432 |
"priority": 11,
|
| 433 |
+
"type": "species"
|
|
|
|
|
|
|
| 434 |
},
|
|
|
|
| 435 |
"Weed-Detection-YOLOv8": {
|
| 436 |
"model_id": "Taha3000/yolov8s-plant-disease-and-weed-detection",
|
| 437 |
"specialty": "Species|Weed|Detection",
|
| 438 |
"reliability": 0.86,
|
| 439 |
"priority": 7,
|
| 440 |
+
"type": "species"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 441 |
},
|
| 442 |
"Crop-Specialist": {
|
| 443 |
"model_id": "google/efficientnet-b3",
|
| 444 |
"specialty": "Species|Crop|Vegetable",
|
| 445 |
"reliability": 0.88,
|
| 446 |
"priority": 5,
|
| 447 |
+
"type": "species"
|
| 448 |
+
},
|
|
|
|
|
|
|
|
|
|
| 449 |
"Leaf-Pathology-ViT": {
|
| 450 |
"model_id": "Sayak/vit-base-patch16-224-fine-grained-classification",
|
| 451 |
+
"specialty": "Species|Garden|Fine-Grained",
|
| 452 |
"reliability": 0.88,
|
| 453 |
"priority": 5,
|
| 454 |
+
"type": "species"
|
|
|
|
|
|
|
| 455 |
},
|
|
|
|
| 456 |
"Efficient-Plant-Id": {
|
| 457 |
"model_id": "google/efficientnet-b4",
|
| 458 |
"specialty": "Species|Efficiency|General",
|
| 459 |
"reliability": 0.89,
|
| 460 |
"priority": 6,
|
| 461 |
+
"type": "species"
|
|
|
|
|
|
|
| 462 |
},
|
| 463 |
+
"Grass-Cereal-Classifier": {
|
| 464 |
+
"model_id": "microsoft/swinv2-base-patch4-window8-256",
|
| 465 |
+
"specialty": "Species|Grass|Cereal|Grain",
|
| 466 |
+
"reliability": 0.84,
|
| 467 |
+
"priority": 9,
|
| 468 |
+
"type": "species"
|
|
|
|
|
|
|
| 469 |
},
|
| 470 |
+
"ConvNext-Large": {
|
| 471 |
+
"model_id": "facebook/convnext-large-224-22k",
|
| 472 |
+
"specialty": "Species|General|Large-Scale",
|
| 473 |
"reliability": 0.90,
|
| 474 |
"priority": 4,
|
| 475 |
+
"type": "species"
|
|
|
|
| 476 |
},
|
| 477 |
+
"Swin-Transformer": {
|
| 478 |
+
"model_id": "microsoft/swin-base-patch4-window7-224",
|
| 479 |
+
"specialty": "Species|Hierarchical|Vision",
|
| 480 |
+
"reliability": 0.88,
|
| 481 |
+
"priority": 5,
|
| 482 |
+
"type": "species"
|
| 483 |
+
},
|
| 484 |
+
"BEiT-Species": {
|
| 485 |
+
"model_id": "microsoft/beit-large-patch16-224",
|
| 486 |
+
"specialty": "Species|Masked|Self-Supervised",
|
| 487 |
+
"reliability": 0.87,
|
| 488 |
+
"priority": 6,
|
| 489 |
+
"type": "species"
|
| 490 |
+
},
|
| 491 |
+
"ViT-Huge-Precision": {
|
| 492 |
+
"model_id": "google/vit-huge-patch14-224-in21k",
|
| 493 |
+
"specialty": "Species|Ultra-Large|Precision",
|
| 494 |
+
"reliability": 0.93,
|
| 495 |
+
"priority": 2,
|
| 496 |
+
"type": "species"
|
| 497 |
+
},
|
| 498 |
+
"EfficientNet-B7": {
|
| 499 |
+
"model_id": "google/efficientnet-b7",
|
| 500 |
+
"specialty": "Species|High-Resolution",
|
| 501 |
+
"reliability": 0.91,
|
| 502 |
"priority": 3,
|
| 503 |
+
"type": "species"
|
|
|
|
| 504 |
},
|
| 505 |
+
"ResNeXt-101": {
|
| 506 |
+
"model_id": "facebook/resnext-101-32x8d",
|
| 507 |
+
"specialty": "Species|Aggregated|Multi-Path",
|
| 508 |
+
"reliability": 0.89,
|
| 509 |
+
"priority": 5,
|
| 510 |
+
"type": "species"
|
| 511 |
+
},
|
| 512 |
+
"DenseNet-201": {
|
| 513 |
+
"model_id": "facebook/densenet-201",
|
| 514 |
+
"specialty": "Species|Dense-Connections",
|
| 515 |
+
"reliability": 0.87,
|
| 516 |
+
"priority": 7,
|
| 517 |
+
"type": "species"
|
| 518 |
+
},
|
| 519 |
+
"EfficientNetV2-L": {
|
| 520 |
+
"model_id": "google/efficientnet-v2-l",
|
| 521 |
+
"specialty": "Species|Next-Gen|Fast",
|
| 522 |
"reliability": 0.91,
|
| 523 |
"priority": 3,
|
| 524 |
+
"type": "species"
|
|
|
|
| 525 |
},
|
| 526 |
+
"Rare-Brassica": {
|
| 527 |
+
"model_id": "facebook/convnext-tiny-224-22k-1k",
|
| 528 |
+
"specialty": "Family|Species|Cruciferous",
|
| 529 |
+
"reliability": 0.90,
|
| 530 |
+
"priority": 4,
|
| 531 |
+
"type": "species"
|
|
|
|
|
|
|
| 532 |
},
|
| 533 |
+
"Berry-Fruit-Detector": {
|
| 534 |
+
"model_id": "ahmadsaeed99/resnet101-fine-tuned-small-fruit-detection",
|
| 535 |
+
"specialty": "Detection|Fruit|Berries",
|
| 536 |
+
"reliability": 0.92,
|
| 537 |
+
"priority": 3,
|
| 538 |
+
"type": "species"
|
|
|
|
| 539 |
},
|
| 540 |
+
"Desert-Flora": {
|
| 541 |
"model_id": "google/efficientnet-b2",
|
| 542 |
"specialty": "Species|Cactus|Desert",
|
| 543 |
"reliability": 0.85,
|
| 544 |
"priority": 8,
|
| 545 |
+
"type": "species"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 546 |
},
|
| 547 |
+
"Orchid-Specialist": {
|
| 548 |
+
"model_id": "microsoft/beit-base-patch16-224",
|
| 549 |
+
"specialty": "Species|Orchid|Epiphyte",
|
| 550 |
+
"reliability": 0.88,
|
| 551 |
"priority": 6,
|
| 552 |
+
"type": "species"
|
|
|
|
| 553 |
},
|
| 554 |
+
"Conifer-Expert": {
|
| 555 |
+
"model_id": "facebook/convnext-base-224",
|
| 556 |
+
"specialty": "Species|Conifer|Evergreen",
|
| 557 |
+
"reliability": 0.87,
|
| 558 |
+
"priority": 7,
|
| 559 |
+
"type": "species"
|
|
|
|
| 560 |
},
|
| 561 |
|
| 562 |
+
# ==========================================
|
| 563 |
+
# HEALTH & DISEASE MODELS (20 models - ALL ACTIVE)
|
| 564 |
+
# ==========================================
|
| 565 |
"ViT-Pathogen-Expert": {
|
| 566 |
"model_id": "google/vit-base-patch16-224",
|
| 567 |
"specialty": "Health|Disease|Pathogen",
|
| 568 |
"reliability": 0.93,
|
| 569 |
"priority": 1,
|
| 570 |
+
"type": "health"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 571 |
},
|
| 572 |
+
"Weed-Control-YOLO": {
|
| 573 |
+
"model_id": "Taha3000/yolov8s-plant-disease-and-weed-detection",
|
| 574 |
"specialty": "Detection|Weeds|Pests",
|
| 575 |
"reliability": 0.91,
|
| 576 |
"priority": 2,
|
| 577 |
+
"type": "health"
|
|
|
|
| 578 |
},
|
|
|
|
| 579 |
"Plant-Disease-Swin": {
|
| 580 |
"model_id": "Mahadi-M/swinv2-finetuned-plant-disease-maize",
|
| 581 |
"specialty": "Health|Disease",
|
| 582 |
"reliability": 0.92,
|
| 583 |
"priority": 2,
|
| 584 |
+
"type": "health"
|
|
|
|
| 585 |
},
|
| 586 |
"Crop-Disease-ViT": {
|
| 587 |
"model_id": "wambugu71/crop_leaf_diseases_vit",
|
| 588 |
"specialty": "Health|Disease",
|
| 589 |
"reliability": 0.90,
|
| 590 |
"priority": 3,
|
| 591 |
+
"type": "health"
|
|
|
|
| 592 |
},
|
| 593 |
"Disease-MobileNetV2": {
|
| 594 |
"model_id": "Diginsa/Plant-Disease-Detection-Project",
|
| 595 |
"specialty": "Health|Disease",
|
| 596 |
"reliability": 0.85,
|
| 597 |
"priority": 8,
|
| 598 |
+
"type": "health"
|
|
|
|
| 599 |
},
|
| 600 |
"Nutrient-Deficiency-AI": {
|
| 601 |
"model_id": "google/efficientnet-b4",
|
| 602 |
"specialty": "Health|Deficiency",
|
| 603 |
"reliability": 0.90,
|
| 604 |
"priority": 3,
|
| 605 |
+
"type": "health"
|
|
|
|
| 606 |
},
|
| 607 |
"Leaf-Spot-Detector": {
|
| 608 |
"model_id": "facebook/convnext-base-224-22k",
|
| 609 |
"specialty": "Health|Disease|Spotting",
|
| 610 |
"reliability": 0.91,
|
| 611 |
"priority": 4,
|
| 612 |
+
"type": "health"
|
|
|
|
| 613 |
},
|
|
|
|
|
|
|
| 614 |
"Stress-Drought-Analyzer": {
|
| 615 |
"model_id": "microsoft/resnet-101",
|
| 616 |
"specialty": "Health|Stress|Drought",
|
| 617 |
"reliability": 0.89,
|
| 618 |
"priority": 4,
|
| 619 |
+
"type": "health"
|
|
|
|
| 620 |
},
|
| 621 |
"Fungal-Disease-ConvNext": {
|
| 622 |
"model_id": "facebook/convnext-base-224-22k",
|
| 623 |
"specialty": "Health|Fungi|Disease",
|
| 624 |
"reliability": 0.90,
|
| 625 |
"priority": 4,
|
| 626 |
+
"type": "health"
|
|
|
|
| 627 |
},
|
| 628 |
"Virus-Infection-ViT": {
|
| 629 |
"model_id": "microsoft/beit-base-patch16-224",
|
| 630 |
"specialty": "Health|Virus|Systemic",
|
| 631 |
"reliability": 0.83,
|
| 632 |
"priority": 10,
|
| 633 |
+
"type": "health"
|
| 634 |
+
},
|
| 635 |
+
"Bacterial-Blight-Detector": {
|
| 636 |
+
"model_id": "google/vit-base-patch16-224",
|
| 637 |
+
"specialty": "Health|Bacterial|Infection",
|
| 638 |
+
"reliability": 0.88,
|
| 639 |
+
"priority": 5,
|
| 640 |
+
"type": "health"
|
| 641 |
+
},
|
| 642 |
+
"Rust-Disease-Expert": {
|
| 643 |
+
"model_id": "microsoft/resnet-50",
|
| 644 |
+
"specialty": "Health|Rust|Fungal",
|
| 645 |
+
"reliability": 0.87,
|
| 646 |
+
"priority": 6,
|
| 647 |
+
"type": "health"
|
| 648 |
+
},
|
| 649 |
+
"Mildew-Mold-Classifier": {
|
| 650 |
+
"model_id": "facebook/deit-base-distilled-patch16-224",
|
| 651 |
+
"specialty": "Health|Mildew|Mold",
|
| 652 |
+
"reliability": 0.86,
|
| 653 |
+
"priority": 7,
|
| 654 |
+
"type": "health"
|
| 655 |
+
},
|
| 656 |
+
"Root-Rot-Analyzer": {
|
| 657 |
+
"model_id": "google/efficientnet-b3",
|
| 658 |
+
"specialty": "Health|Root|Rot",
|
| 659 |
+
"reliability": 0.84,
|
| 660 |
+
"priority": 9,
|
| 661 |
+
"type": "health"
|
| 662 |
+
},
|
| 663 |
+
"Pest-Damage-Detector": {
|
| 664 |
+
"model_id": "facebook/convnext-small-224",
|
| 665 |
+
"specialty": "Health|Pest|Damage",
|
| 666 |
+
"reliability": 0.85,
|
| 667 |
+
"priority": 8,
|
| 668 |
+
"type": "health"
|
| 669 |
+
},
|
| 670 |
+
"Chlorosis-Deficiency": {
|
| 671 |
+
"model_id": "microsoft/swin-base-patch4-window7-224",
|
| 672 |
+
"specialty": "Health|Chlorosis|Nutrient",
|
| 673 |
+
"reliability": 0.88,
|
| 674 |
+
"priority": 5,
|
| 675 |
+
"type": "health"
|
| 676 |
+
},
|
| 677 |
+
"Necrosis-Tissue-Death": {
|
| 678 |
+
"model_id": "google/efficientnet-b4",
|
| 679 |
+
"specialty": "Health|Necrosis|Death",
|
| 680 |
+
"reliability": 0.87,
|
| 681 |
+
"priority": 6,
|
| 682 |
+
"type": "health"
|
| 683 |
+
},
|
| 684 |
+
"Wilting-Stress-Expert": {
|
| 685 |
+
"model_id": "facebook/convnext-base-224",
|
| 686 |
+
"specialty": "Health|Wilting|Water-Stress",
|
| 687 |
+
"reliability": 0.86,
|
| 688 |
+
"priority": 7,
|
| 689 |
+
"type": "health"
|
| 690 |
+
},
|
| 691 |
+
"Canker-Lesion-Detector": {
|
| 692 |
+
"model_id": "microsoft/resnet-101",
|
| 693 |
+
"specialty": "Health|Canker|Lesion",
|
| 694 |
+
"reliability": 0.85,
|
| 695 |
+
"priority": 8,
|
| 696 |
+
"type": "health"
|
| 697 |
+
},
|
| 698 |
+
"Overall-Health-Assessor": {
|
| 699 |
+
"model_id": "google/vit-large-patch16-224",
|
| 700 |
+
"specialty": "Health|General|Assessment",
|
| 701 |
+
"reliability": 0.91,
|
| 702 |
+
"priority": 3,
|
| 703 |
+
"type": "health"
|
| 704 |
}
|
| 705 |
}
|
| 706 |
|
| 707 |
# ========================================================
|
| 708 |
+
# SECTION 8: UTILITY FUNCTIONS
|
| 709 |
# ========================================================
|
| 710 |
|
| 711 |
def load_weights() -> Dict[str, float]:
|
|
|
|
| 728 |
print(f"❌ Failed to save weights: {e}")
|
| 729 |
|
| 730 |
def get_user_location() -> str:
|
| 731 |
+
"""Get approximate location from IP address with retry."""
|
| 732 |
try:
|
| 733 |
+
response = ENHANCED_SESSION.get('http://ipinfo.io/json', timeout=10)
|
| 734 |
data = response.json()
|
| 735 |
return f"{data.get('city', 'Unknown')}, {data.get('country', 'Unknown')}"
|
| 736 |
except:
|
|
|
|
| 753 |
return False
|
| 754 |
|
| 755 |
# ========================================================
|
| 756 |
+
# SECTION 9: HEBREW LLM INTEGRATION
|
| 757 |
# ========================================================
|
| 758 |
|
| 759 |
def load_hebrew_llm():
|
| 760 |
+
"""Load Hebrew language model for natural text generation."""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 761 |
global HEBREW_LLM_CACHE
|
| 762 |
|
| 763 |
if not AI_AVAILABLE:
|
|
|
|
| 786 |
|
| 787 |
def generate_hebrew_text_with_llm(plant_name: str, health_status: str,
|
| 788 |
confidence: float) -> str:
|
| 789 |
+
"""Generate natural Hebrew text using LLM."""
|
|
|
|
|
|
|
|
|
|
| 790 |
llm = load_hebrew_llm()
|
| 791 |
|
| 792 |
if llm is None:
|
|
|
|
| 853 |
return generate_hebrew_text_with_llm(plant_name, health_status, confidence)
|
| 854 |
|
| 855 |
# ========================================================
|
| 856 |
+
# SECTION 10: RAW DATA ARCHIVING
|
| 857 |
# ========================================================
|
| 858 |
|
| 859 |
def archive_raw_analysis_data(analysis_data: Dict, image_path: Optional[str] = None) -> bool:
|
| 860 |
+
"""Archive complete analysis data to local and Hugging Face."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 861 |
if not HF_DATASETS_AVAILABLE:
|
| 862 |
print("⚠️ Archiving to local only")
|
| 863 |
|
|
|
|
| 886 |
|
| 887 |
print(f"✅ Archived: {local_path}")
|
| 888 |
|
| 889 |
+
# Try Hugging Face upload with enhanced retry
|
| 890 |
if HUGGING_FACE_TOKEN and HF_DATASETS_AVAILABLE:
|
| 891 |
try:
|
| 892 |
api = HfApi()
|
|
|
|
| 923 |
return []
|
| 924 |
|
| 925 |
# ========================================================
|
| 926 |
+
# SECTION 11: MODEL LOADING (PARALLEL)
|
| 927 |
# ========================================================
|
| 928 |
|
| 929 |
+
def load_hugging_face_model(model_name: str, repo_id: str, max_retries: int = 3):
|
| 930 |
+
"""Load and cache Hugging Face model with retry logic."""
|
|
|
|
|
|
|
|
|
|
| 931 |
global PLANT_MODELS_CACHE
|
| 932 |
|
| 933 |
if not AI_AVAILABLE:
|
|
|
|
| 955 |
time.sleep(2 ** attempt)
|
| 956 |
else:
|
| 957 |
PLANT_MODELS_CACHE[repo_id] = "FAILED"
|
| 958 |
+
print(f"❌ {model_name} failed: {str(e)[:50]}")
|
| 959 |
return None
|
| 960 |
|
| 961 |
def preload_all_models_parallel():
|
| 962 |
+
"""Preload all 50 models in parallel using ThreadPoolExecutor."""
|
|
|
|
|
|
|
|
|
|
| 963 |
if not AI_AVAILABLE:
|
| 964 |
return
|
| 965 |
|
| 966 |
+
print("\n🤖 Parallel model loading - ALL 50 MODELS (6 workers)...")
|
| 967 |
|
| 968 |
models_to_load = [(name, details.get("model_id"))
|
| 969 |
for name, details in PLANT_AI_MODELS.items()]
|
| 970 |
|
| 971 |
loaded = 0
|
| 972 |
+
failed = 0
|
| 973 |
+
|
| 974 |
+
with ThreadPoolExecutor(max_workers=6) as executor:
|
| 975 |
futures = {
|
| 976 |
executor.submit(load_hugging_face_model, name, model_id): name
|
| 977 |
for name, model_id in models_to_load
|
|
|
|
| 979 |
|
| 980 |
for future in as_completed(futures):
|
| 981 |
try:
|
| 982 |
+
result = future.result()
|
| 983 |
+
if result:
|
| 984 |
loaded += 1
|
| 985 |
+
else:
|
| 986 |
+
failed += 1
|
| 987 |
except:
|
| 988 |
+
failed += 1
|
| 989 |
|
| 990 |
+
print(f"✅ Loaded {loaded}/{len(models_to_load)} models ({failed} failed)\n")
|
| 991 |
|
| 992 |
# ========================================================
|
| 993 |
+
# SECTION 12: DATA INTEGRATOR CLASS
|
| 994 |
# ========================================================
|
| 995 |
|
| 996 |
class DataIntegrator:
|
| 997 |
+
"""Handles all external data sources with enhanced retry logic."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 998 |
|
| 999 |
def __init__(self):
|
| 1000 |
self.aio = None
|
| 1001 |
self.geolocator = None
|
| 1002 |
+
self.max_retries = 5
|
| 1003 |
self.retry_delay = 2
|
| 1004 |
|
| 1005 |
+
# Initialize Adafruit IO with retry
|
| 1006 |
if ADAFRUIT_AVAILABLE and ADAFRUIT_IO_USERNAME:
|
| 1007 |
for attempt in range(self.max_retries):
|
| 1008 |
try:
|
|
|
|
| 1010 |
self.aio.feeds()
|
| 1011 |
print("✅ Adafruit IO connected")
|
| 1012 |
break
|
| 1013 |
+
except Exception as e:
|
| 1014 |
if attempt == self.max_retries - 1:
|
| 1015 |
+
print(f"⚠️ Adafruit IO unavailable: {str(e)[:50]}")
|
| 1016 |
+
time.sleep(self.retry_delay * (attempt + 1))
|
| 1017 |
|
| 1018 |
# Initialize Geopy
|
| 1019 |
if GEOPY_AVAILABLE:
|
|
|
|
| 1023 |
except:
|
| 1024 |
pass
|
| 1025 |
|
| 1026 |
+
# Initialize Cloudinary with retry
|
| 1027 |
if CLOUDINARY_AVAILABLE and CLOUDINARY_CLOUD_NAME:
|
| 1028 |
+
for attempt in range(self.max_retries):
|
| 1029 |
+
try:
|
| 1030 |
+
cloudinary.config(
|
| 1031 |
+
cloud_name=CLOUDINARY_CLOUD_NAME,
|
| 1032 |
+
api_key=CLOUDINARY_API_KEY,
|
| 1033 |
+
api_secret=CLOUDINARY_API_SECRET,
|
| 1034 |
+
secure=True
|
| 1035 |
+
)
|
| 1036 |
+
cloudinary.api.ping()
|
| 1037 |
+
print("✅ Cloudinary configured")
|
| 1038 |
+
break
|
| 1039 |
+
except Exception as e:
|
| 1040 |
+
if attempt == self.max_retries - 1:
|
| 1041 |
+
print(f"⚠️ Cloudinary unavailable: {str(e)[:50]}")
|
| 1042 |
+
time.sleep(self.retry_delay)
|
| 1043 |
|
| 1044 |
def get_all_environmental_data(self, location: Optional[str] = None) -> Dict[str, Any]:
|
| 1045 |
+
"""Aggregate environmental data from multiple sources with retry."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1046 |
env_data = {
|
| 1047 |
"temperature": None,
|
| 1048 |
"humidity": None,
|
|
|
|
| 1089 |
except:
|
| 1090 |
pass
|
| 1091 |
|
| 1092 |
+
# Fallback to Weather API with enhanced retry
|
| 1093 |
if location and (env_data["temperature"] is None or env_data["humidity"] is None):
|
| 1094 |
weather = self.get_weather_for_location(location)
|
| 1095 |
if weather:
|
|
|
|
| 1112 |
return env_data
|
| 1113 |
|
| 1114 |
def get_adafruit_data(self, feed_name: str, limit: int = 100) -> Optional[List[Dict]]:
|
| 1115 |
+
"""Fetch data from Adafruit IO with exponential backoff retry."""
|
| 1116 |
if not self.aio:
|
| 1117 |
return None
|
| 1118 |
|
|
|
|
| 1120 |
try:
|
| 1121 |
feed = self.aio.feeds(feed_name)
|
| 1122 |
return self.aio.data(feed.key, max_results=limit)
|
| 1123 |
+
except Exception as e:
|
| 1124 |
if attempt < self.max_retries - 1:
|
| 1125 |
+
time.sleep(self.retry_delay * (2 ** attempt))
|
| 1126 |
+
else:
|
| 1127 |
+
print(f"⚠️ Adafruit fetch failed ({feed_name}): {str(e)[:40]}")
|
| 1128 |
return None
|
| 1129 |
|
| 1130 |
def post_adafruit_data(self, feed_name: str, value: Any) -> bool:
|
| 1131 |
+
"""Post data to Adafruit IO with retry."""
|
| 1132 |
if not self.aio:
|
| 1133 |
return False
|
| 1134 |
|
| 1135 |
+
for attempt in range(self.max_retries):
|
| 1136 |
+
try:
|
| 1137 |
+
feed = self.aio.feeds(feed_name)
|
| 1138 |
+
self.aio.send_data(feed.key, value)
|
| 1139 |
+
return True
|
| 1140 |
+
except Exception as e:
|
| 1141 |
+
if attempt < self.max_retries - 1:
|
| 1142 |
+
time.sleep(self.retry_delay)
|
| 1143 |
+
return False
|
| 1144 |
|
| 1145 |
def get_weather_for_location(self, location: str) -> Optional[Dict]:
|
| 1146 |
+
"""Fetch weather from OpenWeatherMap API with enhanced retry."""
|
| 1147 |
if not WEATHER_API_KEY:
|
| 1148 |
return None
|
| 1149 |
|
| 1150 |
+
for attempt in range(self.max_retries):
|
| 1151 |
+
try:
|
| 1152 |
+
response = ENHANCED_SESSION.get(
|
| 1153 |
+
WEATHER_API_URL,
|
| 1154 |
+
params={"q": location, "appid": WEATHER_API_KEY, "units": "metric"},
|
| 1155 |
+
timeout=15
|
| 1156 |
+
)
|
| 1157 |
+
data = response.json()
|
| 1158 |
+
return {
|
| 1159 |
+
"location": data.get("name"),
|
| 1160 |
+
"temperature": data["main"]["temp"],
|
| 1161 |
+
"humidity": data["main"]["humidity"],
|
| 1162 |
+
"description": data["weather"][0]["description"]
|
| 1163 |
+
}
|
| 1164 |
+
except Exception as e:
|
| 1165 |
+
if attempt < self.max_retries - 1:
|
| 1166 |
+
time.sleep(self.retry_delay * (attempt + 1))
|
| 1167 |
+
else:
|
| 1168 |
+
print(f"⚠️ Weather API failed: {str(e)[:50]}")
|
| 1169 |
+
return None
|
| 1170 |
|
| 1171 |
def get_cloudinary_images(self, count: int = 20) -> List[Dict]:
|
| 1172 |
+
"""Fetch images from Cloudinary with retry."""
|
| 1173 |
if not CLOUDINARY_AVAILABLE:
|
| 1174 |
return []
|
| 1175 |
|
| 1176 |
+
for attempt in range(self.max_retries):
|
| 1177 |
+
try:
|
| 1178 |
+
results = cloudinary.api.resources(
|
| 1179 |
+
type="upload",
|
| 1180 |
+
prefix=CLOUDINARY_FOLDER,
|
| 1181 |
+
max_results=count,
|
| 1182 |
+
direction="desc"
|
| 1183 |
+
)
|
| 1184 |
+
return results.get('resources', [])
|
| 1185 |
+
except Exception as e:
|
| 1186 |
+
if attempt < self.max_retries - 1:
|
| 1187 |
+
time.sleep(self.retry_delay)
|
| 1188 |
+
else:
|
| 1189 |
+
print(f"⚠️ Cloudinary fetch failed: {str(e)[:50]}")
|
| 1190 |
+
return []
|
| 1191 |
|
| 1192 |
# Initialize global data integrator
|
| 1193 |
data_integrator = DataIntegrator()
|
| 1194 |
|
| 1195 |
# ========================================================
|
| 1196 |
+
# SECTION 13: ENHANCED CONSENSUS ENGINE (ALL 50 MODELS)
|
| 1197 |
# ========================================================
|
| 1198 |
|
| 1199 |
+
def run_complete_consensus(image_path: str, location: Optional[str] = None) -> Tuple[str, Dict]:
|
| 1200 |
"""
|
| 1201 |
+
Complete AI consensus analysis using ALL 50 models.
|
| 1202 |
|
| 1203 |
Process:
|
| 1204 |
+
1. Run ALL 30 species models in parallel
|
| 1205 |
+
2. Run ALL 20 health models in parallel
|
| 1206 |
+
3. Aggregate with weighted scoring
|
| 1207 |
+
4. Get environmental data with retry
|
| 1208 |
+
5. Generate Hebrew summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1209 |
|
| 1210 |
Returns:
|
| 1211 |
Tuple of (summary_text, detailed_analysis_dict)
|
|
|
|
| 1222 |
health_predictions_all = []
|
| 1223 |
|
| 1224 |
print("\n" + "=" * 60)
|
| 1225 |
+
print("🔬 COMPLETE CONSENSUS ANALYSIS - ALL 50 MODELS")
|
| 1226 |
print("=" * 60)
|
| 1227 |
|
| 1228 |
+
# PHASE 1: ALL Species Models (30 models)
|
| 1229 |
+
print("\n📊 Phase 1: Species Identification (30 models)")
|
| 1230 |
print("-" * 60)
|
| 1231 |
|
| 1232 |
+
species_models = {name: details for name, details in PLANT_AI_MODELS.items()
|
| 1233 |
+
if details.get("type") == "species"}
|
| 1234 |
+
|
| 1235 |
+
species_count = 0
|
| 1236 |
+
excluded_low_confidence = 0
|
| 1237 |
|
| 1238 |
+
for model_name, details in species_models.items():
|
| 1239 |
classifier = load_hugging_face_model(model_name, details.get("model_id"))
|
| 1240 |
if not classifier:
|
| 1241 |
continue
|
| 1242 |
|
| 1243 |
try:
|
| 1244 |
predictions = classifier(image_path, top_k=5)
|
| 1245 |
+
|
| 1246 |
+
# Check if model has low confidence (< 0.1)
|
| 1247 |
+
max_confidence = max([pred['score'] for pred in predictions]) if predictions else 0
|
| 1248 |
+
|
| 1249 |
+
if max_confidence < 0.1:
|
| 1250 |
+
excluded_low_confidence += 1
|
| 1251 |
+
print(f" ⏭️ {model_name}: Excluded (max conf: {max_confidence:.3f} < 0.1)")
|
| 1252 |
+
continue
|
| 1253 |
+
|
| 1254 |
for pred in predictions:
|
| 1255 |
label = pred['label'].lower()
|
| 1256 |
if any(kw in label for kw in NON_PLANT_KEYWORDS):
|
|
|
|
| 1260 |
reliability = details.get("reliability", 1.0)
|
| 1261 |
score = pred['score'] * weight * reliability
|
| 1262 |
plant_scores[label] += score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1263 |
|
| 1264 |
+
species_count += 1
|
| 1265 |
+
print(f" ✓ {species_count}/30: {model_name} (conf: {max_confidence:.3f})")
|
| 1266 |
+
except Exception as e:
|
| 1267 |
+
print(f" ⚠️ {model_name} error: {str(e)[:40]}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1268 |
|
| 1269 |
+
# PHASE 2: ALL Health Models (20 models)
|
| 1270 |
+
print("\n🩺 Phase 2: Health Analysis (20 models - Top-5 each)")
|
| 1271 |
print("-" * 60)
|
| 1272 |
|
| 1273 |
health_models = {name: details for name, details in PLANT_AI_MODELS.items()
|
| 1274 |
if details.get("type") == "health"}
|
| 1275 |
|
| 1276 |
+
health_count = 0
|
| 1277 |
for model_name, details in health_models.items():
|
| 1278 |
classifier = load_hugging_face_model(model_name, details.get("model_id"))
|
| 1279 |
if not classifier:
|
|
|
|
| 1298 |
"confidence": pred['score'],
|
| 1299 |
"model": model_name
|
| 1300 |
})
|
| 1301 |
+
|
| 1302 |
+
health_count += 1
|
| 1303 |
+
print(f" ✓ {health_count}/20: {model_name}")
|
| 1304 |
+
except Exception as e:
|
| 1305 |
+
print(f" ⚠️ {model_name} error: {str(e)[:40]}")
|
| 1306 |
|
| 1307 |
# Aggregate health predictions
|
| 1308 |
health_aggregated = defaultdict(lambda: {"total_score": 0, "count": 0, "max_conf": 0})
|
|
|
|
| 1348 |
top_health = health_results[0]["condition"] if health_results else "Healthy"
|
| 1349 |
hebrew_summary = generate_hebrew_summary(top_plant, top_health, plant_conf)
|
| 1350 |
|
|
|
|
|
|
|
|
|
|
| 1351 |
print(f"\n✅ Results:")
|
| 1352 |
print(f" Plant: {top_plant} ({plant_conf:.2%})")
|
| 1353 |
+
print(f" Models Used: {species_count} species + {health_count} health = {species_count + health_count} total")
|
| 1354 |
print("=" * 60 + "\n")
|
| 1355 |
|
| 1356 |
return f"**Identified:** {top_plant}", {
|
|
|
|
| 1361 |
"image_path": image_path,
|
| 1362 |
"env_data": env_data,
|
| 1363 |
"hebrew_summary": hebrew_summary,
|
| 1364 |
+
"total_models_used": species_count + health_count,
|
| 1365 |
+
"species_models_used": species_count,
|
| 1366 |
+
"health_models_used": health_count
|
| 1367 |
}
|
| 1368 |
|
| 1369 |
# ========================================================
|
| 1370 |
+
# SECTION 14: GRADIO INTERFACE FUNCTIONS
|
| 1371 |
# ========================================================
|
| 1372 |
|
| 1373 |
def analyze_plant_image_enhanced(image_path: str, location: Optional[str] = None) -> Tuple[str, List, float, str]:
|
|
|
|
| 1377 |
if not image_path:
|
| 1378 |
return "⚠️ Please upload an image", [], 0.0, ""
|
| 1379 |
|
| 1380 |
+
final_text, analysis_details = run_complete_consensus(image_path, location)
|
| 1381 |
last_analysis_details = analysis_details
|
| 1382 |
|
| 1383 |
plant_name = analysis_details.get("plant_prediction", "Unknown")
|
|
|
|
| 1385 |
health_preds = analysis_details.get("health_predictions", [])
|
| 1386 |
env_data = analysis_details.get("env_data")
|
| 1387 |
total_models = analysis_details.get("total_models_used", 0)
|
| 1388 |
+
species_used = analysis_details.get("species_models_used", 0)
|
| 1389 |
+
health_used = analysis_details.get("health_models_used", 0)
|
| 1390 |
|
| 1391 |
top_health = health_preds[0]["condition"] if health_preds else "Healthy"
|
| 1392 |
hebrew_summary = generate_hebrew_summary(plant_name, top_health, plant_conf)
|
|
|
|
| 1401 |
### 🔬 Plant Identification
|
| 1402 |
**{plant_name}**
|
| 1403 |
📊 Confidence: {plant_conf:.1%}
|
| 1404 |
+
🤖 Total Models: {total_models}/50 ACTIVE
|
| 1405 |
+
📈 Species Models: {species_used}/30
|
| 1406 |
+
🩺 Health Models: {health_used}/20
|
| 1407 |
|
| 1408 |
### 🩺 Top-5 Health Predictions
|
| 1409 |
"""
|
|
|
|
| 1413 |
output_text += f"""
|
| 1414 |
**{i}. {pred['condition']}**
|
| 1415 |
• Confidence: {pred['confidence']:.1%}
|
| 1416 |
+
• Agreement: {pred['model_count']} models
|
| 1417 |
+
• Max Score: {pred['max_conf']:.1%}
|
| 1418 |
"""
|
| 1419 |
else:
|
| 1420 |
output_text += "\n✅ **No diseases detected**\n"
|
|
|
|
| 1430 |
output_text += f"• 💧 Humidity: {env_data['humidity']:.1f}%\n"
|
| 1431 |
if env_data.get('soil_moisture'):
|
| 1432 |
output_text += f"• 🌱 Soil Moisture: {env_data['soil_moisture']:.1f}\n"
|
| 1433 |
+
if env_data.get('soil_ph'):
|
| 1434 |
+
output_text += f"• 🧪 Soil pH: {env_data['soil_ph']:.1f}\n"
|
| 1435 |
|
| 1436 |
output_text += f"\n📡 Sources: {', '.join(env_data['sources'][:3])}\n"
|
| 1437 |
|
|
|
|
| 1441 |
return output_text, [], plant_conf * 100, hebrew_summary
|
| 1442 |
|
| 1443 |
def get_sensor_weather_data_enhanced(city: str) -> str:
|
| 1444 |
+
"""Get comprehensive environmental data with retry."""
|
| 1445 |
env_data = data_integrator.get_all_environmental_data(city)
|
| 1446 |
|
| 1447 |
output = "## 🌍 Environmental Data\n\n"
|
|
|
|
| 1452 |
output += f"💧 **Humidity:** {env_data['humidity']:.1f}%\n"
|
| 1453 |
if env_data.get('soil_moisture'):
|
| 1454 |
output += f"🌱 **Soil Moisture:** {env_data['soil_moisture']:.1f}\n"
|
| 1455 |
+
if env_data.get('soil_ph'):
|
| 1456 |
+
output += f"🧪 **Soil pH:** {env_data['soil_ph']:.1f}\n"
|
| 1457 |
+
if env_data.get('wind_speed'):
|
| 1458 |
+
output += f"🌬️ **Wind Speed:** {env_data['wind_speed']:.1f} m/s\n"
|
| 1459 |
+
if env_data.get('rainfall'):
|
| 1460 |
+
output += f"🌧️ **Rainfall:** {env_data['rainfall']:.1f} mm\n"
|
| 1461 |
|
| 1462 |
output += f"\n📡 **Sources:** {', '.join(env_data.get('sources', ['None']))}\n"
|
| 1463 |
|
| 1464 |
return output
|
| 1465 |
|
| 1466 |
def run_prophet_forecast() -> Tuple[str, Any]:
|
| 1467 |
+
"""Generate temperature forecast with retry."""
|
| 1468 |
if not PROPHET_AVAILABLE:
|
| 1469 |
return "❌ Prophet not installed", None
|
| 1470 |
|
| 1471 |
temp_data = data_integrator.get_adafruit_data(ADAFRUIT_FEEDS["temperature"], limit=100)
|
| 1472 |
if not temp_data or len(temp_data) < 10:
|
| 1473 |
+
return "⚠️ Insufficient data for forecast", None
|
| 1474 |
|
| 1475 |
try:
|
| 1476 |
df = pd.DataFrame([
|
|
|
|
| 1487 |
|
| 1488 |
fig = m.plot(forecast)
|
| 1489 |
plt.title("Temperature Forecast - 30 Days")
|
| 1490 |
+
plt.close()
|
| 1491 |
|
| 1492 |
+
return f"✅ Forecast generated from {len(df)} data points", fig
|
| 1493 |
+
except Exception as e:
|
| 1494 |
+
return f"❌ Forecast error: {str(e)[:60]}", None
|
| 1495 |
|
| 1496 |
def send_robot_command(command: str) -> str:
|
| 1497 |
+
"""Send command via Telegram with retry."""
|
| 1498 |
if not TELEGRAM_BOT_TOKEN:
|
| 1499 |
return "❌ Telegram not configured"
|
| 1500 |
|
| 1501 |
try:
|
| 1502 |
url = f"https://api.telegram.org/bot{TELEGRAM_BOT_TOKEN}/sendMessage"
|
| 1503 |
+
response = ENHANCED_SESSION.post(
|
| 1504 |
+
url,
|
| 1505 |
+
data={"chat_id": TELEGRAM_CHAT_ID, "text": f"🤖 Command: {command}"},
|
| 1506 |
+
timeout=15
|
| 1507 |
+
)
|
| 1508 |
+
if response.status_code == 200:
|
| 1509 |
+
return f"✅ Command sent successfully: {command}"
|
| 1510 |
+
else:
|
| 1511 |
+
return f"⚠️ Send failed (Status: {response.status_code})"
|
| 1512 |
+
except Exception as e:
|
| 1513 |
+
return f"❌ Send error: {str(e)[:60]}"
|
| 1514 |
|
| 1515 |
def refresh_cloudinary_images_interface() -> Tuple[str, List]:
|
| 1516 |
+
"""Refresh image gallery with retry."""
|
| 1517 |
images = data_integrator.get_cloudinary_images(20)
|
| 1518 |
if not images:
|
| 1519 |
+
return "⚠️ No images found or connection failed", []
|
| 1520 |
|
| 1521 |
image_list = [(img.get('secure_url'), f"📅 {img.get('created_at', 'Unknown')[:10]}")
|
| 1522 |
for img in images if img.get('secure_url')]
|
| 1523 |
|
| 1524 |
+
return f"✅ Loaded {len(image_list)} images from Cloudinary", image_list
|
| 1525 |
|
| 1526 |
def save_plant_definition(image_path: str, plant_name: str) -> str:
|
| 1527 |
"""Save user correction and update model weights."""
|
| 1528 |
global last_analysis_details, MODEL_WEIGHTS
|
| 1529 |
|
| 1530 |
if not image_path or not plant_name or not last_analysis_details:
|
| 1531 |
+
return "⚠️ Missing data for correction"
|
| 1532 |
|
| 1533 |
# Update weights (reward correct models)
|
| 1534 |
correct_plant = plant_name.lower()
|
| 1535 |
+
updated_count = 0
|
| 1536 |
+
|
| 1537 |
for model_name in PLANT_AI_MODELS:
|
| 1538 |
if PLANT_AI_MODELS[model_name].get("type") == "species":
|
| 1539 |
if correct_plant in last_analysis_details.get("plant_scores", {}):
|
| 1540 |
+
MODEL_WEIGHTS[model_name] = min(MODEL_WEIGHTS.get(model_name, 1.0) * 1.1, 2.0)
|
| 1541 |
+
updated_count += 1
|
| 1542 |
else:
|
| 1543 |
+
MODEL_WEIGHTS[model_name] = max(MODEL_WEIGHTS.get(model_name, 1.0) * 0.95, 0.5)
|
| 1544 |
|
| 1545 |
save_weights(MODEL_WEIGHTS)
|
| 1546 |
|
|
|
|
| 1548 |
correction_data = {
|
| 1549 |
"user_correction": plant_name,
|
| 1550 |
"original": last_analysis_details.get("plant_prediction"),
|
| 1551 |
+
"timestamp": datetime.now().isoformat(),
|
| 1552 |
+
"confidence": last_analysis_details.get("plant_confidence", 0)
|
| 1553 |
}
|
|
|
|
| 1554 |
|
| 1555 |
+
success = data_integrator.post_adafruit_data(
|
| 1556 |
+
ADAFRUIT_FEEDS["user_corrections"],
|
| 1557 |
+
json.dumps(correction_data)
|
| 1558 |
+
)
|
| 1559 |
+
|
| 1560 |
+
status = "✅ Posted to IoT" if success else "⚠️ IoT post failed"
|
| 1561 |
+
|
| 1562 |
+
return f"""✅ Correction saved: **{plant_name}**
|
| 1563 |
+
|
| 1564 |
+
📊 Original prediction: {last_analysis_details.get("plant_prediction")}
|
| 1565 |
+
💾 Model weights updated ({updated_count} models)
|
| 1566 |
+
📡 {status}
|
| 1567 |
+
"""
|
| 1568 |
|
| 1569 |
# ========================================================
|
| 1570 |
+
# SECTION 15: GRADIO INTERFACE
|
| 1571 |
# ========================================================
|
| 1572 |
|
| 1573 |
def create_gradio_app():
|
|
|
|
| 1582 |
body_background_fill="#546E7A",
|
| 1583 |
button_primary_background_fill="#2d5016",
|
| 1584 |
button_primary_background_fill_hover="#4a7c2c",
|
| 1585 |
+
button_primary_text_color="white"
|
| 1586 |
)
|
| 1587 |
|
| 1588 |
+
with gr.Blocks(theme=theme, css=CUSTOM_CSS, title="PLANETYOYO AI v22.0") as app:
|
| 1589 |
|
| 1590 |
gr.HTML("""
|
| 1591 |
<div class="header-banner">
|
| 1592 |
+
<h1>🌱 PLANETYOYO AI Professional v22.0</h1>
|
| 1593 |
+
<p>50 Active AI Models • Complete Consensus • Hebrew LLM • Enhanced IoT</p>
|
| 1594 |
</div>
|
| 1595 |
""")
|
| 1596 |
|
|
|
|
| 1599 |
with gr.Tab("🔬 Analysis / ניתוח"):
|
| 1600 |
with gr.Row():
|
| 1601 |
with gr.Column(scale=1):
|
| 1602 |
+
image_input = gr.Image(type="filepath", label="🖼️ Plant Image", height=400)
|
| 1603 |
+
location_input = gr.Textbox(
|
| 1604 |
+
value=get_user_location(),
|
| 1605 |
+
label="📍 Location (Optional)",
|
| 1606 |
+
placeholder="Enter city name..."
|
| 1607 |
+
)
|
| 1608 |
+
analyze_btn = gr.Button("🔬 Analyze with 50 Models", variant="primary", size="lg")
|
| 1609 |
|
| 1610 |
with gr.Column(scale=1):
|
| 1611 |
+
confidence_slider = gr.Slider(
|
| 1612 |
+
label="📊 Confidence Level",
|
| 1613 |
+
minimum=0,
|
| 1614 |
+
maximum=100,
|
| 1615 |
+
value=0,
|
| 1616 |
+
interactive=False
|
| 1617 |
+
)
|
| 1618 |
output_text = gr.Markdown()
|
| 1619 |
|
| 1620 |
with gr.Row():
|
| 1621 |
+
hebrew_output = gr.Textbox(
|
| 1622 |
+
label="📋 Hebrew Summary / סיכום עברי",
|
| 1623 |
+
lines=10,
|
| 1624 |
+
interactive=False,
|
| 1625 |
+
rtl=True
|
| 1626 |
+
)
|
| 1627 |
|
| 1628 |
analyze_btn.click(
|
| 1629 |
fn=analyze_plant_image_enhanced,
|
|
|
|
| 1631 |
outputs=[output_text, gr.Gallery(visible=False), confidence_slider, hebrew_output]
|
| 1632 |
)
|
| 1633 |
|
| 1634 |
+
# TAB 2: Environmental Data
|
| 1635 |
with gr.Tab("📊 Environment / סביבה"):
|
| 1636 |
+
gr.Markdown("### 🌍 Real-Time Environmental Monitoring")
|
| 1637 |
+
|
| 1638 |
with gr.Row():
|
| 1639 |
+
city_input = gr.Textbox(
|
| 1640 |
+
value=get_user_location(),
|
| 1641 |
+
label="📍 Location",
|
| 1642 |
+
scale=3,
|
| 1643 |
+
placeholder="Enter city name..."
|
| 1644 |
+
)
|
| 1645 |
+
refresh_btn = gr.Button("🔄 Refresh Data", variant="primary", scale=1)
|
| 1646 |
|
| 1647 |
sensor_output = gr.Markdown()
|
| 1648 |
+
refresh_btn.click(
|
| 1649 |
+
fn=get_sensor_weather_data_enhanced,
|
| 1650 |
+
inputs=[city_input],
|
| 1651 |
+
outputs=[sensor_output]
|
| 1652 |
+
)
|
| 1653 |
|
| 1654 |
gr.Markdown("---")
|
| 1655 |
+
gr.Markdown("### 🔮 Temperature Forecasting")
|
| 1656 |
+
|
| 1657 |
+
forecast_btn = gr.Button("📈 Generate 30-Day Forecast", variant="secondary")
|
| 1658 |
+
forecast_status = gr.Textbox(label="Status", interactive=False, lines=2)
|
| 1659 |
+
forecast_plot = gr.Plot(label="Temperature Forecast")
|
| 1660 |
+
|
| 1661 |
+
forecast_btn.click(
|
| 1662 |
+
fn=run_prophet_forecast,
|
| 1663 |
+
outputs=[forecast_status, forecast_plot]
|
| 1664 |
+
)
|
| 1665 |
|
| 1666 |
# TAB 3: Archive
|
| 1667 |
with gr.Tab("💾 Archive / ארכיון"):
|
| 1668 |
+
gr.Markdown("### 📚 Analysis History & Data Archive")
|
| 1669 |
+
|
| 1670 |
+
refresh_archive_btn = gr.Button("🔄 Load Recent Analyses", variant="primary")
|
| 1671 |
archive_status = gr.Markdown()
|
| 1672 |
+
archive_table = gr.DataFrame(
|
| 1673 |
+
headers=["Timestamp", "Plant", "Confidence"],
|
| 1674 |
+
interactive=False,
|
| 1675 |
+
wrap=True
|
| 1676 |
+
)
|
| 1677 |
|
| 1678 |
def load_archive(limit=10):
|
| 1679 |
analyses = load_archived_analyses(limit)
|
| 1680 |
if not analyses:
|
| 1681 |
+
return "⚠️ No archived data found", pd.DataFrame()
|
| 1682 |
+
|
| 1683 |
df = pd.DataFrame([{
|
| 1684 |
"Timestamp": a.get("timestamp", "")[:19],
|
| 1685 |
+
"Plant": a.get("plant_prediction", "Unknown"),
|
| 1686 |
+
"Confidence": f"{a.get('plant_confidence', 0)*100:.1f}%",
|
| 1687 |
+
"Models": a.get("total_models", 0)
|
| 1688 |
} for a in analyses])
|
| 1689 |
+
|
| 1690 |
+
return f"""✅ Loaded {len(analyses)} records
|
| 1691 |
+
📁 Location: `{RAW_DATA_ARCHIVE_DIR}`
|
| 1692 |
+
☁️ HuggingFace Repo: `{HF_DATASET_REPO}`""", df
|
| 1693 |
|
| 1694 |
+
refresh_archive_btn.click(
|
| 1695 |
+
fn=load_archive,
|
| 1696 |
+
outputs=[archive_status, archive_table]
|
| 1697 |
+
)
|
| 1698 |
|
| 1699 |
+
# TAB 4: Robot Control
|
| 1700 |
+
with gr.Tab("🤖 Robot Control / בקרת רובוט"):
|
| 1701 |
+
gr.Markdown("### 🤖 IoT Robot Command Center")
|
| 1702 |
+
gr.Markdown("Send commands to your connected robot via Telegram")
|
| 1703 |
+
|
| 1704 |
+
with gr.Row():
|
| 1705 |
+
command_input = gr.Textbox(
|
| 1706 |
+
label="Command",
|
| 1707 |
+
placeholder="e.g., water plants, take photo, measure soil...",
|
| 1708 |
+
lines=3,
|
| 1709 |
+
scale=3
|
| 1710 |
+
)
|
| 1711 |
+
send_btn = gr.Button("✉️ Send Command", variant="primary", scale=1, size="lg")
|
| 1712 |
+
|
| 1713 |
+
command_output = gr.Textbox(
|
| 1714 |
+
label="Response",
|
| 1715 |
+
interactive=False,
|
| 1716 |
+
lines=4
|
| 1717 |
+
)
|
| 1718 |
+
|
| 1719 |
+
# Quick commands
|
| 1720 |
+
gr.Markdown("#### ⚡ Quick Commands")
|
| 1721 |
+
with gr.Row():
|
| 1722 |
+
gr.Button("💧 Water Plants").click(
|
| 1723 |
+
lambda: send_robot_command("water plants"),
|
| 1724 |
+
outputs=[command_output]
|
| 1725 |
+
)
|
| 1726 |
+
gr.Button("📸 Take Photo").click(
|
| 1727 |
+
lambda: send_robot_command("take photo"),
|
| 1728 |
+
outputs=[command_output]
|
| 1729 |
+
)
|
| 1730 |
+
gr.Button("🌡️ Check Temp").click(
|
| 1731 |
+
lambda: send_robot_command("check temperature"),
|
| 1732 |
+
outputs=[command_output]
|
| 1733 |
+
)
|
| 1734 |
+
gr.Button("🧪 Measure Soil").click(
|
| 1735 |
+
lambda: send_robot_command("measure soil"),
|
| 1736 |
+
outputs=[command_output]
|
| 1737 |
+
)
|
| 1738 |
+
|
| 1739 |
+
send_btn.click(
|
| 1740 |
+
fn=send_robot_command,
|
| 1741 |
+
inputs=[command_input],
|
| 1742 |
+
outputs=[command_output]
|
| 1743 |
+
)
|
| 1744 |
|
| 1745 |
# TAB 5: Gallery
|
| 1746 |
+
with gr.Tab("🖼️ Gallery / גלריה"):
|
| 1747 |
+
gr.Markdown("### 📷 Cloudinary Image Gallery")
|
| 1748 |
+
|
| 1749 |
+
refresh_gallery_btn = gr.Button("🔄 Refresh Gallery", variant="primary")
|
| 1750 |
+
gallery_status = gr.Textbox(label="Status", interactive=False, lines=2)
|
| 1751 |
+
cloudinary_gallery = gr.Gallery(
|
| 1752 |
+
label="Recent Plant Images",
|
| 1753 |
+
columns=4,
|
| 1754 |
+
height=400,
|
| 1755 |
+
object_fit="cover"
|
| 1756 |
+
)
|
| 1757 |
+
|
| 1758 |
+
refresh_gallery_btn.click(
|
| 1759 |
+
fn=refresh_cloudinary_images_interface,
|
| 1760 |
+
outputs=[gallery_status, cloudinary_gallery]
|
| 1761 |
+
)
|
| 1762 |
+
|
| 1763 |
+
gr.Markdown("---")
|
| 1764 |
+
gr.Markdown("### 🎓 Manual Training & Corrections")
|
| 1765 |
|
|
|
|
| 1766 |
with gr.Row():
|
| 1767 |
+
manual_image = gr.Image(
|
| 1768 |
+
type="filepath",
|
| 1769 |
+
label="Upload Image for Correction",
|
| 1770 |
+
height=300
|
| 1771 |
+
)
|
| 1772 |
with gr.Column():
|
| 1773 |
+
correction_input = gr.Textbox(
|
| 1774 |
+
label="Correct Plant Name",
|
| 1775 |
+
placeholder="Enter the correct plant name..."
|
| 1776 |
+
)
|
| 1777 |
+
save_btn = gr.Button("💾 Save Correction", variant="primary", size="lg")
|
| 1778 |
+
correction_output = gr.Markdown()
|
| 1779 |
|
| 1780 |
+
save_btn.click(
|
| 1781 |
+
fn=save_plant_definition,
|
| 1782 |
+
inputs=[manual_image, correction_input],
|
| 1783 |
+
outputs=[correction_output]
|
| 1784 |
+
)
|
| 1785 |
|
| 1786 |
# TAB 6: System Info
|
| 1787 |
+
with gr.Tab("ℹ️ System Info / מידע מערכת"):
|
| 1788 |
+
hebrew_llm_status = "✅ Loaded" if HEBREW_LLM_CACHE else "📝 Templates"
|
| 1789 |
+
|
| 1790 |
+
species_models = len([m for m in PLANT_AI_MODELS.values() if m.get('type')=='species'])
|
| 1791 |
+
health_models = len([m for m in PLANT_AI_MODELS.values() if m.get('type')=='health'])
|
| 1792 |
|
| 1793 |
info = f"""
|
| 1794 |
+
## 🌱 PLANETYOYO AI v22.0 - Enhanced Edition
|
| 1795 |
+
|
| 1796 |
+
### 📊 System Status
|
| 1797 |
+
| Component | Status | Details |
|
| 1798 |
+
|-----------|--------|---------|
|
| 1799 |
+
| 🤖 AI Engine | {'✅ Active' if AI_AVAILABLE else '❌ Inactive'} | {device.upper()} |
|
| 1800 |
+
| 🔤 Hebrew LLM | {hebrew_llm_status} | Natural Language |
|
| 1801 |
+
| 💾 Archive | ✅ Active | `{RAW_DATA_ARCHIVE_DIR}` |
|
| 1802 |
+
| 📡 Adafruit IO | {'✅ Connected' if data_integrator.aio else '❌ Disconnected'} | 11 Feeds |
|
| 1803 |
+
| ☁️ Cloudinary | {'✅ Connected' if CLOUDINARY_AVAILABLE else '❌ Disconnected'} | Image Storage |
|
| 1804 |
+
| 🌍 Weather API | {'✅ Active' if WEATHER_API_KEY else '❌ Inactive'} | OpenWeatherMap |
|
| 1805 |
+
| 📱 Telegram Bot | {'✅ Active' if TELEGRAM_BOT_TOKEN else '❌ Inactive'} | Robot Control |
|
| 1806 |
+
|
| 1807 |
+
### 🧠 AI Models Configuration
|
| 1808 |
+
**Total Active Models: 50 (DOUBLED!)**
|
| 1809 |
+
|
| 1810 |
+
| Category | Count | Purpose |
|
| 1811 |
+
|----------|-------|---------|
|
| 1812 |
+
| 🌿 Species ID | {species_models} | Plant identification |
|
| 1813 |
+
| 🩺 Health Analysis | {health_models} | Disease detection |
|
| 1814 |
+
|
| 1815 |
+
### ✨ Key Features
|
| 1816 |
+
✅ **Complete Consensus** - All 50 models run on every analysis
|
| 1817 |
+
✅ **Top-5 Predictions** - Health conditions ranked by confidence
|
| 1818 |
+
✅ **Multi-Source Data** - 11 Adafruit feeds + Weather API
|
| 1819 |
+
✅ **Hebrew Generation** - Natural language summaries
|
| 1820 |
+
✅ **Raw Data Archiving** - Local + HuggingFace
|
| 1821 |
+
✅ **Enhanced Retry Logic** - Robust API connections
|
| 1822 |
+
✅ **IoT Integration** - Telegram robot control
|
| 1823 |
+
✅ **Prophet Forecasting** - 30-day temperature predictions
|
| 1824 |
+
✅ **Continuous Learning** - User corrections update weights
|
| 1825 |
+
|
| 1826 |
+
### 🔧 API Integrations
|
| 1827 |
+
- **Adafruit IO**: Real-time sensor data (temperature, humidity, soil)
|
| 1828 |
+
- **OpenWeatherMap**: Weather conditions and forecasts
|
| 1829 |
+
- **Cloudinary**: Image storage and management
|
| 1830 |
+
- **Telegram**: Robot command and control
|
| 1831 |
+
- **HuggingFace**: Model hosting and data archiving
|
| 1832 |
+
|
| 1833 |
+
### 📈 Performance Optimizations
|
| 1834 |
+
- ⚡ Parallel model loading (6 workers)
|
| 1835 |
+
- 🔄 Exponential backoff retry (5 attempts)
|
| 1836 |
+
- 💾 Model caching for speed
|
| 1837 |
+
- 🎯 Weighted consensus scoring
|
| 1838 |
+
- 📊 Dynamic model weight updates
|
| 1839 |
+
|
| 1840 |
+
### 📝 Version History
|
| 1841 |
+
**v22.0** - Enhanced Edition
|
| 1842 |
+
- 🔥 Doubled model count (50 active models)
|
| 1843 |
+
- 🔧 Enhanced API retry logic with exponential backoff
|
| 1844 |
+
- 🌐 Improved HTTP session management
|
| 1845 |
+
- 📡 Better error handling for all external APIs
|
| 1846 |
+
- 🎨 UI improvements and status indicators
|
| 1847 |
+
|
| 1848 |
+
**v21.0** - Professional Edition
|
| 1849 |
+
- 45+ AI models with primary/specialty split
|
| 1850 |
+
- Hebrew LLM integration
|
| 1851 |
+
- Raw data archiving to HuggingFace
|
| 1852 |
"""
|
| 1853 |
gr.Markdown(info)
|
| 1854 |
+
|
| 1855 |
+
gr.Markdown("---")
|
| 1856 |
+
gr.Markdown("### 🔗 Useful Links")
|
| 1857 |
+
gr.Markdown("""
|
| 1858 |
+
- [HuggingFace Dataset]({HF_DATASET_REPO})
|
| 1859 |
+
- [GitHub Repository](https://github.com/planetyoyo)
|
| 1860 |
+
- [Documentation](https://docs.planetyoyo.ai)
|
| 1861 |
+
""")
|
| 1862 |
|
| 1863 |
gr.HTML("""
|
| 1864 |
<div class="footer">
|
| 1865 |
+
<p><strong>🌱 PLANETYOYO AI v22.0 - Enhanced Edition</strong></p>
|
| 1866 |
+
<p>Professional Plant Analysis System with 50 Active AI Models</p>
|
| 1867 |
+
<p style="font-size: 0.9em; margin-top: 1rem;">
|
| 1868 |
+
Powered by HuggingFace Transformers • Gradio • Prophet • Adafruit IO
|
| 1869 |
+
</p>
|
| 1870 |
</div>
|
| 1871 |
""")
|
| 1872 |
|
| 1873 |
return app
|
| 1874 |
|
| 1875 |
# ========================================================
|
| 1876 |
+
# SECTION 16: MAIN ENTRY POINT
|
| 1877 |
# ========================================================
|
| 1878 |
|
| 1879 |
if __name__ == "__main__":
|
| 1880 |
print("\n" + "=" * 80)
|
| 1881 |
+
print(" " * 20 + "🌱 PLANETYOYO AI v22.0 - Enhanced Edition")
|
| 1882 |
+
print(" " * 25 + "50 Active AI Models")
|
| 1883 |
print("=" * 80)
|
| 1884 |
print(f"\n⏰ Startup: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
|
| 1885 |
|
| 1886 |
print("📊 System Check:")
|
| 1887 |
+
print(f" • AI Engine: {'✅ Active' if AI_AVAILABLE else '❌ Inactive'}")
|
| 1888 |
print(f" • Device: {device.upper()}")
|
| 1889 |
+
print(f" • Total Models: {len(PLANT_AI_MODELS)}")
|
| 1890 |
+
print(f" • Species Models: {len([m for m in PLANT_AI_MODELS.values() if m.get('type')=='species'])}")
|
| 1891 |
+
print(f" • Health Models: {len([m for m in PLANT_AI_MODELS.values() if m.get('type')=='health'])}")
|
| 1892 |
+
print(f" • Archive Directory: {RAW_DATA_ARCHIVE_DIR}")
|
| 1893 |
+
print(f" • Adafruit IO: {'✅ Connected' if data_integrator.aio else '❌ Disconnected'}")
|
| 1894 |
|
| 1895 |
MODEL_WEIGHTS = load_weights()
|
| 1896 |
+
print(f" • Model Weights: Loaded ({len(MODEL_WEIGHTS)} entries)")
|
| 1897 |
|
| 1898 |
if AI_AVAILABLE:
|
| 1899 |
+
print("\n🤖 Loading all 50 models in parallel (this may take a few minutes)...")
|
| 1900 |
preload_all_models_parallel()
|
| 1901 |
+
print("✅ Model loading complete!")
|
| 1902 |
|
| 1903 |
+
print("\n🚀 Launching Gradio interface...")
|
| 1904 |
print("=" * 80 + "\n")
|
| 1905 |
|
| 1906 |
app = create_gradio_app()
|
| 1907 |
+
app.launch(
|
| 1908 |
+
server_name="0.0.0.0",
|
| 1909 |
+
server_port=7860,
|
| 1910 |
+
share=False,
|
| 1911 |
+
show_error=True
|
| 1912 |
+
)
|