File size: 5,055 Bytes
f205daf e65aa9f f205daf ac3772f f205daf ac3772f f205daf ac3772f f205daf ac3772f f205daf ac3772f f205daf ac3772f f205daf ac3772f f205daf ac3772f f205daf ac3772f f205daf ac3772f f205daf ac3772f f205daf ac3772f f205daf ac3772f f205daf ac3772f f205daf ac3772f f205daf ac3772f f205daf ac3772f f205daf ac3772f f205daf ac3772f f205daf ac3772f f205daf ac3772f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import os
# ✅ Hugging Face 캐시/토큰 경로를 쓰기 가능한 위치로 지정 (Spaces에서는 /data가 안전)
os.environ["HF_HOME"] = "/data"
os.environ["TRANSFORMERS_CACHE"] = "/data/transformers"
os.environ["HF_HUB_CACHE"] = "/data/hub"
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
os.environ.setdefault("PYTORCH_FORCE_MPS_FALLBACK", "1")
import threading
from typing import List, Dict, Iterator
import torch
from fastapi import FastAPI, Body
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, Field
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
TextIteratorStreamer,
)
from peft import PeftModel
# ----------------- 환경 기본값 -----------------
os.environ.setdefault("PYTORCH_FORCE_MPS_FALLBACK", "1")
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
# CPU-only: 4bit 비활성화, float32
USE_4BIT = False
COMPUTE_DTYPE = torch.float32
# 베이스/어댑터 경로
MODEL_ID = os.environ.get("MODEL_ID", "unsloth/Qwen2.5-1.5B-Instruct")
ADAPTER_ID = os.environ.get("ADAPTER_ID", "WildOjisan/qwen2_5_lora_adapter_test1")
# 스레드 수
try:
torch.set_num_threads(max(1, os.cpu_count() or 1))
except Exception:
pass
# ----------------- 로드 -----------------
print(f"[BOOT] Base: {MODEL_ID}")
print(f"[BOOT] LoRA: {ADAPTER_ID}")
device_map = "cpu"
# 토크나이저: 어댑터 쪽에 커스텀 토큰/템플릿이 있을 수 있으니 우선 시도
try:
tokenizer = AutoTokenizer.from_pretrained(ADAPTER_ID, use_fast=False, trust_remote_code=True)
print("[BOOT] Tokenizer loaded from ADAPTER_ID.")
except Exception:
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=False, trust_remote_code=True)
print("[BOOT] Tokenizer loaded from MODEL_ID.")
# pad 토큰 보정(Colab 코드와 동일한 경고 회피)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# 베이스 모델 CPU(float32) 로드
base_model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map=device_map,
trust_remote_code=True,
torch_dtype=COMPUTE_DTYPE,
low_cpu_mem_usage=True,
)
# LoRA 어댑터 얹기 (merge 금지: Colab과 같은 동작)
model = PeftModel.from_pretrained(base_model, ADAPTER_ID)
model.eval()
# ----------------- API 스키마/앱 -----------------
class ChatMessage(BaseModel):
role: str = Field(..., description="system | user | assistant")
content: str
class ChatRequest(BaseModel):
messages: List[ChatMessage]
max_new_tokens: int = 128
temperature: float = 0.7 # Colab 기본에 맞춤
top_p: float = 0.9 # Colab 기본에 맞춤
repetition_penalty: float = 1.1
class ChatResponse(BaseModel):
text: str
app = FastAPI(title="Qwen2.5-1.5B 4bit + LoRA API")
@app.get("/")
def health():
return {"status": "ok", "base": MODEL_ID, "adapter": ADAPTER_ID, "use_4bit": USE_4BIT}
def build_prompt(messages: List[Dict[str, str]]) -> str:
# Qwen 권장 chat 템플릿 (Colab과 동일)
return tokenizer.apply_chat_template(
[{"role": m["role"], "content": m["content"]} for m in messages],
tokenize=False,
add_generation_prompt=True,
)
@app.post("/v1/chat", response_model=ChatResponse)
def chat(req: ChatRequest):
prompt = build_prompt([m.dict() for m in req.messages])
inputs = tokenizer(prompt, return_tensors="pt")
# 모델의 디바이스로 이동
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad():
output_ids = model.generate(
**inputs,
max_new_tokens=req.max_new_tokens,
do_sample=True,
temperature=req.temperature,
top_p=req.top_p,
repetition_penalty=req.repetition_penalty,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
)
text = tokenizer.decode(output_ids[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True)
return ChatResponse(text=text)
def stream_generate(req: ChatRequest) -> Iterator[str]:
prompt = build_prompt([m.dict() for m in req.messages])
inputs = tokenizer(prompt, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
gen_kwargs = dict(
**inputs,
max_new_tokens=req.max_new_tokens,
do_sample=True,
temperature=req.temperature,
top_p=req.top_p,
repetition_penalty=req.repetition_penalty,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
streamer=streamer,
)
thread = threading.Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
for token_text in streamer:
yield f'{{"delta": {token_text.__repr__()}}}\n'
@app.post("/v1/chat/stream")
def chat_stream(req: ChatRequest = Body(...)):
return StreamingResponse(stream_generate(req), media_type="application/x-ndjson")
|