Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- app.py +128 -0
- config.py +5 -0
- model_handler.py +68 -0
- requirements.txt +21 -0
- utils.py +8 -0
app.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from model_handler import ModelHandler
|
| 4 |
+
from utils import get_random_seed
|
| 5 |
+
|
| 6 |
+
# Initialize the model handler
|
| 7 |
+
# We initialize it here to load the model when the app starts
|
| 8 |
+
model_handler = ModelHandler()
|
| 9 |
+
|
| 10 |
+
def generate(
|
| 11 |
+
prompt,
|
| 12 |
+
negative_prompt,
|
| 13 |
+
width,
|
| 14 |
+
height,
|
| 15 |
+
steps,
|
| 16 |
+
guidance_scale,
|
| 17 |
+
seed,
|
| 18 |
+
progress=gr.Progress()
|
| 19 |
+
):
|
| 20 |
+
"""
|
| 21 |
+
Wrapper function to call the model inference.
|
| 22 |
+
"""
|
| 23 |
+
if seed < 0:
|
| 24 |
+
seed = get_random_seed()
|
| 25 |
+
|
| 26 |
+
try:
|
| 27 |
+
image = model_handler.infer(
|
| 28 |
+
prompt=prompt,
|
| 29 |
+
negative_prompt=negative_prompt,
|
| 30 |
+
width=width,
|
| 31 |
+
height=height,
|
| 32 |
+
num_inference_steps=steps,
|
| 33 |
+
guidance_scale=guidance_scale,
|
| 34 |
+
seed=seed,
|
| 35 |
+
progress_callback=progress
|
| 36 |
+
)
|
| 37 |
+
return image, seed
|
| 38 |
+
except Exception as e:
|
| 39 |
+
raise gr.Error(f"Generation failed: {str(e)}")
|
| 40 |
+
|
| 41 |
+
# CSS for custom styling
|
| 42 |
+
css = """
|
| 43 |
+
.container { max-width: 900px; margin: auto; }
|
| 44 |
+
.header { text-align: center; margin-bottom: 20px; }
|
| 45 |
+
.header h1 { font-size: 2.5rem; font-weight: bold; color: #333; }
|
| 46 |
+
.header p { font-size: 1.1rem; color: #666; }
|
| 47 |
+
.footer { text-align: center; margin-top: 20px; font-size: 0.9rem; }
|
| 48 |
+
"""
|
| 49 |
+
|
| 50 |
+
# Create the Gradio Interface
|
| 51 |
+
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
| 52 |
+
|
| 53 |
+
with gr.Column(elem_classes="container"):
|
| 54 |
+
# Header
|
| 55 |
+
with gr.Column(elem_classes="header"):
|
| 56 |
+
gr.Markdown(
|
| 57 |
+
"""
|
| 58 |
+
# Kandinsky 5.0 Lite T2I (SFT)
|
| 59 |
+
### Text-to-Image Generation
|
| 60 |
+
"""
|
| 61 |
+
)
|
| 62 |
+
gr.Markdown("[Built with anycoder](https://huggingface.co/spaces/akhaliq/anycoder)")
|
| 63 |
+
|
| 64 |
+
# Status info for hardware
|
| 65 |
+
device_info = "Running on **GPU** 🚀" if torch.cuda.is_available() else "Running on **CPU** ⚠️ (Inference will be slow)"
|
| 66 |
+
gr.Markdown(device_info)
|
| 67 |
+
|
| 68 |
+
with gr.Row():
|
| 69 |
+
# Left Column: Inputs
|
| 70 |
+
with gr.Column(scale=1):
|
| 71 |
+
prompt = gr.Textbox(
|
| 72 |
+
label="Prompt",
|
| 73 |
+
placeholder="Describe the image you want to generate...",
|
| 74 |
+
lines=3,
|
| 75 |
+
autofocus=True
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
negative_prompt = gr.Textbox(
|
| 79 |
+
label="Negative Prompt",
|
| 80 |
+
placeholder="Low quality, bad anatomy, blurry...",
|
| 81 |
+
lines=2,
|
| 82 |
+
value="low quality, bad anatomy, worst quality, deformed, disfigured"
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 86 |
+
with gr.Row():
|
| 87 |
+
width = gr.Slider(label="Width", minimum=256, maximum=1024, step=64, value=1024)
|
| 88 |
+
height = gr.Slider(label="Height", minimum=256, maximum=1024, step=64, value=1024)
|
| 89 |
+
|
| 90 |
+
steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, step=1, value=25)
|
| 91 |
+
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=20.0, step=0.5, value=7.5)
|
| 92 |
+
|
| 93 |
+
with gr.Row():
|
| 94 |
+
seed = gr.Number(label="Seed", value=-1, precision=0, info="Set to -1 for random")
|
| 95 |
+
random_btn = gr.Button("🎲 Randomize", size="sm", variant="secondary")
|
| 96 |
+
|
| 97 |
+
run_btn = gr.Button("Generate Image", variant="primary", size="lg")
|
| 98 |
+
|
| 99 |
+
# Right Column: Output
|
| 100 |
+
with gr.Column(scale=1):
|
| 101 |
+
result_image = gr.Image(label="Generated Image", type="pil", interactive=False)
|
| 102 |
+
used_seed = gr.Number(label="Seed Used", interactive=False)
|
| 103 |
+
|
| 104 |
+
# Event Handlers
|
| 105 |
+
run_btn.click(
|
| 106 |
+
fn=generate,
|
| 107 |
+
inputs=[prompt, negative_prompt, width, height, steps, guidance_scale, seed],
|
| 108 |
+
outputs=[result_image, used_seed]
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
# Helper to randomize seed input visually
|
| 112 |
+
random_btn.click(lambda: -1, outputs=seed)
|
| 113 |
+
|
| 114 |
+
# Examples
|
| 115 |
+
gr.Examples(
|
| 116 |
+
examples=[
|
| 117 |
+
["A futuristic cityscape with neon lights and flying cars, cyberpunk style, high detail", "low quality, blurry", 1024, 1024, 25, 7.5],
|
| 118 |
+
["A cute red panda drinking coffee in a cozy cafe, digital art", "deformed, ugly", 1024, 1024, 25, 7.0],
|
| 119 |
+
["Portrait of a warrior princess, intricate armor, dramatic lighting, photorealistic", "cartoon, sketch, monochrome", 1024, 1024, 30, 8.0]
|
| 120 |
+
],
|
| 121 |
+
inputs=[prompt, negative_prompt, width, height, steps, guidance_scale],
|
| 122 |
+
fn=generate,
|
| 123 |
+
outputs=[result_image, used_seed],
|
| 124 |
+
cache_examples=False
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
if __name__ == "__main__":
|
| 128 |
+
demo.launch()
|
config.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Configuration settings (Optional, but good practice)
|
| 2 |
+
MODEL_ID = "kandinskylab/Kandinsky-5.0-T2I-Lite-sft-Diffusers"
|
| 3 |
+
MAX_IMAGE_SIZE = 1024
|
| 4 |
+
DEFAULT_STEPS = 50
|
| 5 |
+
DEFAULT_GUIDANCE = 3.5
|
model_handler.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from diffusers import AutoPipelineForTextToImage
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
class ModelHandler:
|
| 6 |
+
def __init__(self):
|
| 7 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
+
self.model_id = "kandinskylab/Kandinsky-5.0-T2I-Lite-sft-Diffusers"
|
| 9 |
+
self.pipeline = None
|
| 10 |
+
self.load_model()
|
| 11 |
+
|
| 12 |
+
def load_model(self):
|
| 13 |
+
"""
|
| 14 |
+
Loads the model pipeline. Uses float16 for GPU to save memory.
|
| 15 |
+
"""
|
| 16 |
+
try:
|
| 17 |
+
print(f"Loading model: {self.model_id} on {self.device}...")
|
| 18 |
+
|
| 19 |
+
dtype = torch.float16 if self.device == "cuda" else torch.float32
|
| 20 |
+
|
| 21 |
+
# AutoPipeline handles the architecture detection automatically
|
| 22 |
+
self.pipeline = AutoPipelineForTextToImage.from_pretrained(
|
| 23 |
+
self.model_id,
|
| 24 |
+
torch_dtype=dtype,
|
| 25 |
+
use_safetensors=True
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
if self.device == "cuda":
|
| 29 |
+
self.pipeline.to("cuda")
|
| 30 |
+
# Optional: Enable CPU offload if VRAM is limited (e.g. < 8GB)
|
| 31 |
+
# self.pipeline.enable_model_cpu_offload()
|
| 32 |
+
|
| 33 |
+
print("Model loaded successfully.")
|
| 34 |
+
|
| 35 |
+
except Exception as e:
|
| 36 |
+
print(f"Error loading model: {e}")
|
| 37 |
+
# Fallback or re-raise depending on deployment needs
|
| 38 |
+
raise e
|
| 39 |
+
|
| 40 |
+
def infer(self, prompt, negative_prompt, width, height, num_inference_steps, guidance_scale, seed, progress_callback=None):
|
| 41 |
+
"""
|
| 42 |
+
Runs inference on the loaded pipeline.
|
| 43 |
+
"""
|
| 44 |
+
if self.pipeline is None:
|
| 45 |
+
self.load_model()
|
| 46 |
+
|
| 47 |
+
generator = torch.Generator(device=self.device).manual_seed(int(seed))
|
| 48 |
+
|
| 49 |
+
# Progress bar handling
|
| 50 |
+
def callback_dynamic(step, timestep, latents):
|
| 51 |
+
if progress_callback:
|
| 52 |
+
progress_callback((step, num_inference_steps))
|
| 53 |
+
|
| 54 |
+
# Depending on the specific diffusers version or pipeline type,
|
| 55 |
+
# callback usage might vary slightly, but this is standard for recent versions.
|
| 56 |
+
image = self.pipeline(
|
| 57 |
+
prompt=prompt,
|
| 58 |
+
negative_prompt=negative_prompt,
|
| 59 |
+
width=width,
|
| 60 |
+
height=height,
|
| 61 |
+
num_inference_steps=num_inference_steps,
|
| 62 |
+
guidance_scale=guidance_scale,
|
| 63 |
+
generator=generator,
|
| 64 |
+
# callback=callback_dynamic, # Optional: enable for granular progress updates
|
| 65 |
+
# callback_steps=1
|
| 66 |
+
).images[0]
|
| 67 |
+
|
| 68 |
+
return image
|
requirements.txt
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch
|
| 3 |
+
torchvision
|
| 4 |
+
torchaudio
|
| 5 |
+
numpy
|
| 6 |
+
Pillow
|
| 7 |
+
requests
|
| 8 |
+
accelerate
|
| 9 |
+
git+https://github.com/huggingface/transformers
|
| 10 |
+
git+https://github.com/huggingface/diffusers
|
| 11 |
+
sentencepiece
|
| 12 |
+
tokenizers
|
| 13 |
+
datasets
|
| 14 |
+
scipy
|
| 15 |
+
joblib
|
| 16 |
+
opencv-python
|
| 17 |
+
matplotlib
|
| 18 |
+
pandas
|
| 19 |
+
openpyxl
|
| 20 |
+
PyPDF2
|
| 21 |
+
python-docx
|
utils.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import time
|
| 3 |
+
|
| 4 |
+
def get_random_seed():
|
| 5 |
+
"""
|
| 6 |
+
Generates a random seed based on system time.
|
| 7 |
+
"""
|
| 8 |
+
return random.randint(0, 2**32 - 1)
|