Spaces:
Sleeping
Sleeping
File size: 18,944 Bytes
631eb6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
# Compatibility fix for huggingface_hub - MUST BE AT TOP
import sys
try:
from huggingface_hub import snapshot_download
except ImportError:
try:
from huggingface_hub import cached_download as snapshot_download
except ImportError:
from huggingface_hub import hf_hub_download as snapshot_download
from transformers import pipeline
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
from sentence_transformers import SentenceTransformer
import logging
from typing import List, Dict, Set, Tuple, Optional
import time
import re
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize the sentence transformer model for semantic similarity
try:
model = SentenceTransformer('all-MiniLM-L6-v2')
MODEL_LOADED = True
logger.info("Sentence transformer model loaded successfully")
except Exception as e:
logger.error(f"Failed to load sentence transformer model: {e}")
MODEL_LOADED = False
# Embedding cache for performance
embedding_cache = {}
last_cache_clear = time.time()
CACHE_TTL = 3600 # Clear cache every hour
# Configurable weights for scoring
SCORING_WEIGHTS = {
'semantic_similarity': 0.5,
'popularity': 0.2,
'category_relevance': 0.3 # Increased weight for category relevance
}
# Enhanced category relationships with case-insensitive matching
RELATED_CATEGORIES = {
# Standardized category names (lowercase)
'fullstack': {'web development': 1.0, 'frontend': 0.9, 'backend': 0.9, 'javascript': 0.8, 'react': 0.7, 'node.js': 0.7, 'php': 0.8},
'full stack': {'web development': 1.0, 'frontend': 0.9, 'backend': 0.9, 'javascript': 0.8, 'react': 0.7, 'node.js': 0.7, 'php': 0.8},
'php': {'web development': 0.9, 'backend': 0.8, 'fullstack': 0.7, 'mysql': 0.7, 'laravel': 0.6},
'web development': {'fullstack': 1.0, 'frontend': 0.8, 'backend': 0.8, 'javascript': 0.9, 'html': 0.7, 'php': 0.8},
'web dev': {'fullstack': 1.0, 'frontend': 0.8, 'backend': 0.8, 'javascript': 0.9, 'html': 0.7, 'php': 0.8},
'frontend': {'web development': 0.9, 'html': 0.8, 'css': 0.8, 'javascript': 0.9, 'react': 0.8},
'backend': {'web development': 0.9, 'node.js': 0.8, 'python': 0.7, 'database': 0.8, 'api': 0.7, 'php': 0.8},
'cybersecurity': {'networking': 0.8, 'linux': 0.7, 'python': 0.6, 'ethical hacking': 0.9, 'security': 0.9},
'cyber security': {'networking': 0.8, 'linux': 0.7, 'python': 0.6, 'ethical hacking': 0.9, 'security': 0.9},
'aiml': {'python': 0.9, 'machine learning': 0.8, 'ai': 0.9, 'deep learning': 0.8, 'data science': 0.7},
'ai/ml': {'python': 0.9, 'machine learning': 0.8, 'ai': 0.9, 'deep learning': 0.8, 'data science': 0.7},
'ai ml': {'python': 0.9, 'machine learning': 0.8, 'ai': 0.9, 'deep learning': 0.8, 'data science': 0.7},
'artificial intelligence': {'python': 0.9, 'machine learning': 0.8, 'ai': 0.9, 'deep learning': 0.8, 'data science': 0.7},
'machine learning': {'data science': 0.9, 'python': 0.8, 'ai': 0.7, 'deep learning': 0.8},
'data science': {'python': 0.9, 'machine learning': 0.8, 'statistics': 0.7, 'sql': 0.6},
'mobile development': {'javascript': 0.7, 'react native': 0.9, 'flutter': 0.8, 'ios': 0.7},
'devops': {'linux': 0.8, 'docker': 0.9, 'aws': 0.7, 'ci/cd': 0.8},
'blockchain': {'javascript': 0.7, 'web3': 0.9, 'solidity': 0.8, 'cryptocurrency': 0.7},
'javascript': {'web development': 0.9, 'frontend': 0.8, 'node.js': 0.7, 'react': 0.8},
'python': {'data science': 0.8, 'backend': 0.7, 'machine learning': 0.8, 'automation': 0.6},
'react': {'javascript': 0.9, 'frontend': 0.8, 'web development': 0.7},
'reactjs': {'javascript': 0.9, 'frontend': 0.8, 'web development': 0.7},
'node.js': {'javascript': 0.9, 'backend': 0.8, 'web development': 0.7},
'nodejs': {'javascript': 0.9, 'backend': 0.8, 'web development': 0.7},
'html': {'web development': 0.8, 'frontend': 0.9, 'css': 0.8},
'css': {'web development': 0.8, 'frontend': 0.9, 'html': 0.8},
'sql': {'database': 0.9, 'backend': 0.7, 'data science': 0.6},
'java': {'backend': 0.8, 'spring': 0.9, 'enterprise': 0.7},
}
def normalize_category_name(category: str) -> str:
"""Normalize category name to lowercase and handle common variations"""
if not category:
return ""
# Convert to lowercase and strip whitespace
normalized = category.lower().strip()
# Handle common variations
variations = {
'ai/ml': 'aiml',
'ai ml': 'aiml',
'artificial intelligence': 'aiml',
'full stack': 'fullstack',
'web dev': 'web development',
'cyber security': 'cybersecurity',
'nodejs': 'node.js',
'reactjs': 'react'
}
return variations.get(normalized, normalized)
def _clear_old_cache():
"""Clear cache if TTL has expired"""
global last_cache_clear
current_time = time.time()
if current_time - last_cache_clear > CACHE_TTL:
embedding_cache.clear()
last_cache_clear = current_time
logger.info("Embedding cache cleared")
def get_course_embeddings_batch(courses: List[Dict]) -> Dict[str, np.ndarray]:
"""Generate embeddings for multiple courses with caching"""
if not MODEL_LOADED:
raise Exception("AI model not loaded")
_clear_old_cache()
# Find courses that need embedding
courses_to_embed = []
course_ids_to_embed = []
for course in courses:
course_id = course['id']
if course_id not in embedding_cache:
courses_to_embed.append(course)
course_ids_to_embed.append(course_id)
# Generate embeddings for new courses
if courses_to_embed:
descriptions = [course.get('description', '') or 'No description available'
for course in courses_to_embed]
logger.info(f"Generating embeddings for {len(courses_to_embed)} courses")
embeddings = model.encode(descriptions)
# Cache the new embeddings
for course_id, embedding in zip(course_ids_to_embed, embeddings):
embedding_cache[course_id] = embedding
# Return all requested embeddings
result = {}
for course in courses:
course_id = course['id']
if course_id in embedding_cache:
result[course_id] = embedding_cache[course_id]
return result
def get_related_categories_with_scores(enrolled_categories: Set[str]) -> Dict[str, float]:
"""
Get related categories with similarity scores based on enrolled categories
"""
related_scores = {}
for category in enrolled_categories:
normalized_category = normalize_category_name(category)
# Try exact match first
if normalized_category in RELATED_CATEGORIES:
for related_cat, score in RELATED_CATEGORIES[normalized_category].items():
if related_cat not in enrolled_categories:
if related_cat in related_scores:
related_scores[related_cat] = max(related_scores[related_cat], score)
else:
related_scores[related_cat] = score
else:
# Try partial matching for unknown categories
for known_category, relations in RELATED_CATEGORIES.items():
if known_category in normalized_category or normalized_category in known_category:
for related_cat, score in relations.items():
if related_cat not in enrolled_categories:
if related_cat in related_scores:
related_scores[related_cat] = max(related_scores[related_cat], score * 0.7) # Lower confidence for partial matches
else:
related_scores[related_cat] = score * 0.7
return related_scores
def calculate_category_relevance(course_category: str,
enrolled_categories: Set[str],
related_categories: Dict[str, float]) -> float:
"""Calculate how relevant a course category is to enrolled categories"""
normalized_course_category = normalize_category_name(course_category)
normalized_enrolled_categories = {normalize_category_name(cat) for cat in enrolled_categories}
# Direct match with enrolled categories
for enrolled_cat in normalized_enrolled_categories:
if enrolled_cat in normalized_course_category or normalized_course_category in enrolled_cat:
return 1.0
# Check related categories
for related_cat, score in related_categories.items():
normalized_related_cat = normalize_category_name(related_cat)
if normalized_related_cat in normalized_course_category or normalized_course_category in normalized_related_cat:
return score
return 0.0 # No relevance
def recommend_courses(enrolled_courses, all_courses, top_n=5):
"""
Recommend courses based on enrolled courses using multi-factor scoring
Args:
enrolled_courses: List of courses the student is enrolled in
all_courses: List of all available courses
top_n: Number of recommendations to return
Returns:
List of recommended course IDs
"""
if not MODEL_LOADED:
raise Exception("AI model not loaded")
if not enrolled_courses:
# If no enrolled courses, return popular courses
sorted_courses = sorted(all_courses,
key=lambda x: x.get('enrollment_count', 0),
reverse=True)
return [course['id'] for course in sorted_courses[:top_n]]
try:
# Get enrolled categories and related categories with scores
enrolled_categories = set(course['category'] for course in enrolled_courses)
related_categories = get_related_categories_with_scores(enrolled_categories)
enrolled_ids = set(course['id'] for course in enrolled_courses)
logger.info(f"Enrolled categories: {enrolled_categories}")
logger.info(f"Related categories: {list(related_categories.keys())}")
# Filter out enrolled courses
available_courses = [course for course in all_courses
if course['id'] not in enrolled_ids]
if not available_courses:
logger.warning("No available courses to recommend")
return []
# Get embeddings for all courses in batch
all_courses_for_embedding = enrolled_courses + available_courses
embeddings = get_course_embeddings_batch(all_courses_for_embedding)
# Calculate scores for each available course
scored_courses = []
enrolled_embeddings = [embeddings[course['id']] for course in enrolled_courses
if course['id'] in embeddings]
# Calculate popularity scores more robustly
enrollment_counts = [course.get('enrollment_count', 0) for course in available_courses]
max_enrollment = max(enrollment_counts) if enrollment_counts else 1
min_enrollment = min(enrollment_counts) if enrollment_counts else 0
for course in available_courses:
if course['id'] not in embeddings:
continue
course_embedding = embeddings[course['id']]
# Calculate semantic similarity
semantic_score = 0.0
if enrolled_embeddings:
similarities = cosine_similarity([course_embedding], enrolled_embeddings)[0]
semantic_score = float(np.mean(similarities))
# Calculate robust popularity score (normalized 0-1)
enrollment_count = course.get('enrollment_count', 0)
if max_enrollment > min_enrollment:
popularity_score = (enrollment_count - min_enrollment) / (max_enrollment - min_enrollment)
else:
popularity_score = 0.5 # Default if all courses have same enrollment
# Calculate category relevance
category_relevance = calculate_category_relevance(
course['category'], enrolled_categories, related_categories
)
# Combined score with category relevance having more weight
combined_score = (
semantic_score * SCORING_WEIGHTS['semantic_similarity'] +
popularity_score * SCORING_WEIGHTS['popularity'] +
category_relevance * SCORING_WEIGHTS['category_relevance']
)
scored_courses.append((course, combined_score, semantic_score, popularity_score, category_relevance))
# Sort by combined score
scored_courses.sort(key=lambda x: x[1], reverse=True)
# Apply diversity boost
final_recommendations = _apply_diversity_boost(scored_courses, top_n)
# Log recommendation details
logger.info("=== Recommendation Details ===")
for i, (course, combined_score, semantic_score, popularity_score, category_relevance) in enumerate(scored_courses[:top_n]):
logger.info(f"{i+1}. {course['title']} (Category: {course['category']})")
logger.info(f" Score: {combined_score:.3f} (Semantic: {semantic_score:.3f}, Popularity: {popularity_score:.3f}, Category: {category_relevance:.3f})")
return [course['id'] for course in final_recommendations]
except Exception as e:
logger.error(f"Error generating recommendations: {e}")
return _fallback_recommendations(enrolled_courses, all_courses, top_n)
def _apply_diversity_boost(scored_courses: List[Tuple], top_n: int) -> List[Dict]:
"""Ensure recommendations cover different categories"""
selected_courses = []
selected_categories = set()
for course, combined_score, semantic_score, popularity_score, category_relevance in scored_courses:
if len(selected_courses) >= top_n:
break
current_category = normalize_category_name(course['category'])
# If we already have this category, skip unless it's highly relevant
if current_category in selected_categories and category_relevance < 0.5:
continue
selected_courses.append(course)
selected_categories.add(current_category)
# If we don't have enough recommendations, add the highest scoring ones regardless of category
if len(selected_courses) < top_n:
remaining_slots = top_n - len(selected_courses)
for course, combined_score, semantic_score, popularity_score, category_relevance in scored_courses:
if course not in selected_courses:
selected_courses.append(course)
remaining_slots -= 1
if remaining_slots <= 0:
break
return selected_courses[:top_n]
def _fallback_recommendations(enrolled_courses: List[Dict],
all_courses: List[Dict], top_n: int) -> List[str]:
"""Fallback recommendation strategy when main algorithm fails"""
logger.info("Using fallback recommendation strategy")
enrolled_categories = set(course['category'] for course in enrolled_courses)
enrolled_ids = set(course['id'] for course in enrolled_courses)
# Priority 1: Same categories, sorted by popularity
category_matches = [
course for course in all_courses
if course['category'] in enrolled_categories and course['id'] not in enrolled_ids
]
if len(category_matches) >= top_n:
category_matches.sort(key=lambda x: x.get('enrollment_count', 0), reverse=True)
return [course['id'] for course in category_matches[:top_n]]
# Priority 2: Include related categories
related_categories_map = get_related_categories_with_scores(enrolled_categories)
related_matches = [
course for course in all_courses
if any(related_cat in course['category'] for related_cat in related_categories_map) and course['id'] not in enrolled_ids
]
all_matches = category_matches + related_matches
if all_matches:
all_matches.sort(key=lambda x: x.get('enrollment_count', 0), reverse=True)
return [course['id'] for course in all_matches[:top_n]]
# Priority 3: Most popular courses overall
available_courses = [course for course in all_courses if course['id'] not in enrolled_ids]
available_courses.sort(key=lambda x: x.get('enrollment_count', 0), reverse=True)
return [course['id'] for course in available_courses[:top_n]]
# Legacy functions for backward compatibility
def get_course_embeddings(courses):
"""Legacy function for backward compatibility"""
return get_course_embeddings_batch(courses)
def get_related_categories(enrolled_categories):
"""Legacy function for backward compatibility"""
related_scores = get_related_categories_with_scores(set(enrolled_categories))
return list(related_scores.keys())
def rank_within_category(category_courses, enrolled_courses, all_courses, top_n):
"""Legacy function for backward compatibility - simplified version"""
if not category_courses:
return []
# Use the main recommendation function but filter for category courses
all_courses_filtered = [course for course in all_courses if course in category_courses]
recommendations = recommend_courses(enrolled_courses, all_courses_filtered, top_n)
# Convert back to course objects
course_map = {course['id']: course for course in category_courses}
return [course_map[course_id] for course_id in recommendations if course_id in course_map]
def rank_other_courses(other_courses, enrolled_courses, all_courses, top_n):
"""Legacy function for backward compatibility - simplified version"""
if not other_courses or top_n <= 0:
return []
# Use the main recommendation function but filter for other courses
all_courses_filtered = [course for course in all_courses if course in other_courses]
recommendations = recommend_courses(enrolled_courses, all_courses_filtered, top_n)
# Convert back to course objects
course_map = {course['id']: course for course in other_courses}
return [course_map[course_id] for course_id in recommendations if course_id in course_map] |