Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import pandas as pd | |
| import faiss | |
| import zipfile | |
| import logging | |
| from pathlib import Path | |
| from sentence_transformers import SentenceTransformer, util | |
| import streamlit as st | |
| import time | |
| import os | |
| from urllib.parse import quote | |
| import requests | |
| import shutil | |
| import concurrent.futures | |
| from functools import lru_cache | |
| # Configure logging | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', | |
| handlers=[logging.StreamHandler()] | |
| ) | |
| logger = logging.getLogger("MetadataManager") | |
| class MetadataManager: | |
| def __init__(self): | |
| self.metadata_path = Path("combined.parquet") | |
| self.df = None | |
| self.total_docs = 0 | |
| logger.info("Initializing MetadataManager") | |
| self._load_metadata() | |
| logger.info(f"Total documents indexed: {self.total_docs}") | |
| def _load_metadata(self): | |
| """Load the combined parquet file directly""" | |
| logger.info("Loading metadata from combined.parquet") | |
| try: | |
| # Load the parquet file | |
| self.df = pd.read_parquet(self.metadata_path) | |
| # Clean and format the data | |
| self.df['source'] = self.df['source'].apply( | |
| lambda x: [ | |
| url.strip() | |
| for url in str(x).split(';') | |
| if url.strip() and url.startswith('http') | |
| ] | |
| ) | |
| self.total_docs = len(self.df) | |
| logger.info(f"Successfully loaded {self.total_docs} documents") | |
| except Exception as e: | |
| logger.error(f"Failed to load metadata: {str(e)}") | |
| raise | |
| def get_metadata(self, global_indices): | |
| """Retrieve metadata for given indices with deduplication by title""" | |
| if isinstance(global_indices, np.ndarray) and global_indices.size == 0: | |
| return pd.DataFrame(columns=["title", "summary", 'authors', "similarity", "source"]) | |
| try: | |
| # Directly index the DataFrame | |
| results = self.df.iloc[global_indices].copy() | |
| # Deduplicate by title to avoid near-duplicate results | |
| if len(results) > 1: | |
| results = results.drop_duplicates(subset=["title"]) | |
| return results | |
| except Exception as e: | |
| logger.error(f"Metadata retrieval failed: {str(e)}") | |
| return pd.DataFrame(columns=["title", "summary", "similarity", "source", 'authors']) | |
| class SemanticSearch: | |
| def __init__(self): | |
| self.shard_dir = Path("compressed_shards") | |
| self.model = None | |
| self.index_shards = [] | |
| self.metadata_mgr = MetadataManager() | |
| self.shard_sizes = [] | |
| # Configure search logger | |
| self.logger = logging.getLogger("SemanticSearch") | |
| self.logger.info("Initializing SemanticSearch") | |
| def load_model(_self): | |
| return SentenceTransformer('all-MiniLM-L6-v2') | |
| def initialize_system(self): | |
| self.logger.info("Loading sentence transformer model") | |
| start_time = time.time() | |
| self.model = self.load_model() | |
| self.logger.info(f"Model loaded in {time.time() - start_time:.2f} seconds") | |
| self.logger.info("Loading FAISS indices") | |
| self._load_faiss_shards() | |
| def _load_faiss_shards(self): | |
| """Load all FAISS index shards""" | |
| self.logger.info(f"Searching for index files in {self.shard_dir}") | |
| if not self.shard_dir.exists(): | |
| self.logger.error(f"Shard directory not found: {self.shard_dir}") | |
| return | |
| index_files = list(self.shard_dir.glob("*.index")) | |
| self.logger.info(f"Found {len(index_files)} index files") | |
| self.shard_sizes = [] | |
| self.index_shards = [] | |
| for shard_path in sorted(index_files): | |
| try: | |
| self.logger.info(f"Loading index: {shard_path}") | |
| start_time = time.time() | |
| # Log file size | |
| file_size_mb = os.path.getsize(shard_path) / (1024 * 1024) | |
| self.logger.info(f"Index file size: {file_size_mb:.2f} MB") | |
| index = faiss.read_index(str(shard_path)) | |
| self.index_shards.append(index) | |
| self.shard_sizes.append(index.ntotal) | |
| self.logger.info(f"Loaded index with {index.ntotal} vectors in {time.time() - start_time:.2f} seconds") | |
| except Exception as e: | |
| self.logger.error(f"Failed to load index {shard_path}: {str(e)}") | |
| self.total_vectors = sum(self.shard_sizes) | |
| self.logger.info(f"Total loaded vectors: {self.total_vectors} across {len(self.index_shards)} shards") | |
| def _global_index(self, shard_idx, local_idx): | |
| """Convert local index to global index""" | |
| return sum(self.shard_sizes[:shard_idx]) + local_idx | |
| def search(self, query, top_k=5): | |
| """Search with validation""" | |
| self.logger.info(f"Searching for query: '{query}' (top_k={top_k})") | |
| start_time = time.time() | |
| if not query: | |
| self.logger.warning("Empty query provided") | |
| return pd.DataFrame() | |
| if not self.index_shards: | |
| self.logger.error("No index shards loaded") | |
| return pd.DataFrame() | |
| try: | |
| self.logger.info("Encoding query") | |
| query_embedding = self.model.encode([query], convert_to_numpy=True) | |
| self.logger.debug(f"Query encoded to shape {query_embedding.shape}") | |
| except Exception as e: | |
| self.logger.error(f"Query encoding failed: {str(e)}") | |
| return pd.DataFrame() | |
| all_distances = [] | |
| all_global_indices = [] | |
| # Search with index validation | |
| self.logger.info(f"Searching across {len(self.index_shards)} shards") | |
| for shard_idx, index in enumerate(self.index_shards): | |
| if index.ntotal == 0: | |
| self.logger.warning(f"Skipping empty shard {shard_idx}") | |
| continue | |
| try: | |
| shard_start = time.time() | |
| distances, indices = index.search(query_embedding, top_k) | |
| valid_mask = (indices[0] >= 0) & (indices[0] < index.ntotal) | |
| valid_indices = indices[0][valid_mask].tolist() | |
| valid_distances = distances[0][valid_mask].tolist() | |
| if len(valid_indices) != top_k: | |
| self.logger.debug(f"Shard {shard_idx}: Found {len(valid_indices)} valid results out of {top_k}") | |
| global_indices = [self._global_index(shard_idx, idx) for idx in valid_indices] | |
| all_distances.extend(valid_distances) | |
| all_global_indices.extend(global_indices) | |
| self.logger.debug(f"Shard {shard_idx} search completed in {time.time() - shard_start:.3f}s") | |
| except Exception as e: | |
| self.logger.error(f"Search failed in shard {shard_idx}: {str(e)}") | |
| continue | |
| self.logger.info(f"Search found {len(all_global_indices)} results across all shards") | |
| # Process results | |
| results = self._process_results( | |
| np.array(all_distances), | |
| np.array(all_global_indices), | |
| top_k | |
| ) | |
| self.logger.info(f"Search completed in {time.time() - start_time:.2f} seconds with {len(results)} final results") | |
| return results | |
| def _search_shard(self, shard_idx, index, query_embedding, top_k): | |
| """Search a single FAISS shard for the query embedding with proper error handling.""" | |
| if index.ntotal == 0: | |
| self.logger.warning(f"Skipping empty shard {shard_idx}") | |
| return None | |
| try: | |
| shard_start = time.time() | |
| distances, indices = index.search(query_embedding, top_k) | |
| # Filter out invalid indices (-1 is returned by FAISS for insufficient results) | |
| valid_mask = (indices[0] >= 0) & (indices[0] < index.ntotal) | |
| valid_indices = indices[0][valid_mask] | |
| valid_distances = distances[0][valid_mask] | |
| if len(valid_indices) == 0: | |
| self.logger.debug(f"Shard {shard_idx}: No valid results found") | |
| return None | |
| if len(valid_indices) != top_k: | |
| self.logger.debug(f"Shard {shard_idx}: Found {len(valid_indices)} valid results out of {top_k}") | |
| global_indices = [self._global_index(shard_idx, idx) for idx in valid_indices] | |
| # Filter out any invalid global indices (could happen if _global_index validation fails) | |
| valid_global = [(d, i) for d, i in zip(valid_distances, global_indices) if i >= 0] | |
| if not valid_global: | |
| return None | |
| final_distances, final_indices = zip(*valid_global) | |
| self.logger.debug(f"Shard {shard_idx} search completed in {time.time() - shard_start:.3f}s") | |
| return final_distances, final_indices | |
| except Exception as e: | |
| self.logger.error(f"Search failed in shard {shard_idx}: {str(e)}") | |
| return None | |
| def _process_results(self, distances, global_indices, top_k): | |
| """Process raw search results into formatted DataFrame""" | |
| process_start = time.time() | |
| # Proper numpy array emptiness checks | |
| if global_indices.size == 0 or distances.size == 0: | |
| self.logger.warning("No search results to process") | |
| return pd.DataFrame(columns=["title", "summary", "source", "authors", "similarity"]) | |
| try: | |
| # Get metadata for matched indices | |
| self.logger.info(f"Retrieving metadata for {len(global_indices)} indices") | |
| metadata_start = time.time() | |
| results = self.metadata_mgr.get_metadata(global_indices) | |
| self.logger.info(f"Metadata retrieved in {time.time() - metadata_start:.2f}s, got {len(results)} records") | |
| # Empty results check | |
| if len(results) == 0: | |
| self.logger.warning("No metadata found for indices") | |
| return pd.DataFrame(columns=["title", "summary", "source", "authors", "similarity"]) | |
| # Ensure distances match results length | |
| if len(results) != len(distances): | |
| self.logger.warning(f"Mismatch between distances ({len(distances)}) and results ({len(results)})") | |
| if len(results) < len(distances): | |
| self.logger.info("Truncating distances array to match results length") | |
| distances = distances[:len(results)] | |
| else: | |
| # Should not happen but handle it anyway | |
| self.logger.error("More results than distances - this shouldn't happen") | |
| distances = np.pad(distances, (0, len(results) - len(distances)), 'constant', constant_values=1.0) | |
| # Calculate similarity scores | |
| self.logger.debug("Calculating similarity scores") | |
| results['similarity'] = 1 - (distances / 2) | |
| # Log similarity statistics | |
| if not results.empty: | |
| self.logger.debug(f"Similarity stats: min={results['similarity'].min():.3f}, " + | |
| f"max={results['similarity'].max():.3f}, " + | |
| f"mean={results['similarity'].mean():.3f}") | |
| # Deduplicate and sort results | |
| pre_dedup = len(results) | |
| results = results.drop_duplicates(subset=["title"]).sort_values("similarity", ascending=False).head(top_k) | |
| post_dedup = len(results) | |
| if pre_dedup > post_dedup: | |
| self.logger.info(f"Removed {pre_dedup - post_dedup} duplicate results") | |
| self.logger.info(f"Results processed in {time.time() - process_start:.2f}s, returning {len(results)} items") | |
| return results.reset_index(drop=True) | |
| # Add URL resolution for final results only | |
| final_results = results.sort_values("similarity", ascending=False).head(top_k) | |
| # Resolve URLs for top results only | |
| # final_results['source'] = | |
| # Deduplicate based on title only | |
| final_results = final_results.drop_duplicates(subset=["title"]).head(top_k) | |
| return final_results.reset_index(drop=True) | |
| except Exception as e: | |
| self.logger.error(f"Result processing failed: {str(e)}", exc_info=True) | |
| return pd.DataFrame(columns=["title", "summary", "similarity", 'authors']) |