File size: 14,200 Bytes
ae41f1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af33aa5
ae41f1f
 
 
af33aa5
ae41f1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af33aa5
ae41f1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af33aa5
ae41f1f
 
 
 
 
 
 
 
 
af33aa5
ae41f1f
 
 
 
 
 
af33aa5
 
ae41f1f
 
 
 
 
 
 
 
 
 
 
af33aa5
 
 
 
ae41f1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af33aa5
 
ae41f1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af33aa5
 
 
 
 
 
 
 
 
ae41f1f
 
 
 
 
 
af33aa5
 
 
 
ae41f1f
 
 
 
 
 
 
 
 
 
 
af33aa5
ae41f1f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import gradio as gr
import json
import random
import os
from typing import List, Dict, Any, Optional

# -----------------------------
# Available JSON files (persona datasets)
# -----------------------------
available_files = [
    "persona_annotator_sample.json"
]

data = []
index = 0
current_file = None

ICONS = {
    "header": "πŸ‘€",
    "categories": "🏷️",
    "presenting": "🚩",
    "clinical": "🩺",
    "history": "πŸ“œ",
    "functioning": "πŸ”§",
    "summary": "🧾",
    "context": "🧩",
    "metadata": "πŸ”–",
    "other": "πŸ—‚οΈ",
}

SECTION_FIELDS = {
    "header": [
        "name", "archetype", "age", "sex", "location",
        "education_level", "bachelors_field", "ethnic_background", "marital_status",
        "version"
    ],
    "categories": ["appearance_category", "behavior_category"],
    "presenting": ["presenting_problems"],
    "clinical": ["appearance", "behavior", "mood_affect", "speech",
                 "thought_content", "insight_judgment", "cognition"],
    "history": ["medical_developmental_history", "family_history", "educational_vocational_history"],
    "functioning": ["emotional_behavioral_functioning", "social_functioning"],
    "summary": ["summary_of_psychological_profile"],
    "context": ["archetype_description", "memoir", "memoir_summary", "memoir_narrative"],
    "metadata": ["uid"],
}

# -----------------------------
# Persistent storage path
# -----------------------------
PERSISTENT_DIR = "/home/user/app/storage"
if os.path.exists(PERSISTENT_DIR):
    STORAGE_DIR = PERSISTENT_DIR
else:
    STORAGE_DIR = "."
os.makedirs(STORAGE_DIR, exist_ok=True)
ANNOTATION_FILE = os.path.join(STORAGE_DIR, "persona_annotations.jsonl")

# -----------------------------
# Core functions
# -----------------------------

def _get(entry: Dict[str, Any], key: str, default: str = "β€”") -> str:
    v = entry.get(key, default)
    if v is None:
        return default
    if isinstance(v, (list, dict)):
        try:
            return json.dumps(v, ensure_ascii=False)
        except Exception:
            return str(v)
    return str(v).strip()

def _truncate(s: str, limit: int = 2000) -> str:
    s = s or ""
    return (s[:limit] + " …") if len(s) > limit else s
    
    
def load_file(file_name):
    """Load selected JSON file and show first/random entry"""
    global data, index, current_file
    current_file = file_name
    with open(file_name, "r", encoding="utf-8") as f:
        data = json.load(f)
    index = random.randint(0, len(data) - 1)
    return show_entry()


def save_annotation(p_uuid, *scores_and_comments):
    """Save annotations to persistent storage as JSONL (with file name)"""
    ann = {
        "file_name": current_file,
        "persona_uuid": p_uuid,
        "annotations": {}
    }

    rubric_fields = [
        "clarity", "originality", "coherence", "diversity", "realism",
        "psychological_depth", "consistency", "informativeness",
        "ethical_considerations", "demographic_fidelity", "overall_score"
    ]

    for field, value in zip(rubric_fields, scores_and_comments):
        ann["annotations"][field] = value

    with open(ANNOTATION_FILE, "a", encoding="utf-8") as f:
        f.write(json.dumps(ann, ensure_ascii=False) + "\n")

    return f"βœ… Saved annotation for {p_uuid} (from {current_file}) β†’ {ANNOTATION_FILE}"

def export_annotations():
    """Return path to annotations file for download"""
    if os.path.exists(ANNOTATION_FILE):
        return ANNOTATION_FILE
    else:
        with open(ANNOTATION_FILE, "w", encoding="utf-8") as f:
            pass
        return ANNOTATION_FILE
    
    
def md_header(entry: Dict[str, Any]) -> str:
    name = _get(entry, "name")
    archetype = _get(entry, "archetype")
    age = _get(entry, "age")
    sex = _get(entry, "sex")
    location = _get(entry, "location")
    education_level = _get(entry, "education_level")
    bachelors_field = _get(entry, "bachelors_field")
    ethnic_background = _get(entry, "ethnic_background")
    marital_status = _get(entry, "marital_status")
    version = _get(entry, "version")
    return (
        f"## {ICONS['header']} Persona\n"
        f"**Name:** {name}  \n"
        f"**Archetype:** {archetype}  \n"
        f"**Age:** {age}  \n"
        f"**Sex:** {sex}  \n"
        f"**Location:** {location}  \n"
        f"**Education Level:** {education_level}  \n"
        f"**Bachelor’s Field:** {bachelors_field}  \n"
        f"**Ethnic Background:** {ethnic_background}  \n"
        f"**Marital Status:** {marital_status}  \n"
        f"**Version:** {version}"
    )

def md_categories(entry: Dict[str, Any]) -> str:
    app_cat = _get(entry, "appearance_category")
    beh_cat = _get(entry, "behavior_category")
    return (
        f"## {ICONS['categories']} Categories\n"
        f"**Appearance Category:** {app_cat}  \n"
        f"**Behavior Category:** {beh_cat}"
    )

def md_presenting(entry: Dict[str, Any]) -> str:
    raw = entry.get("presenting_problems")
    items: List[str] = []
    if isinstance(raw, list):
        items = [str(x).strip() for x in raw if str(x).strip()]
    elif isinstance(raw, str) and raw.strip():
        try:
            parsed = json.loads(raw)
            if isinstance(parsed, list):
                items = [str(x).strip() for x in parsed if str(x).strip()]
            else:
                items = [x.strip() for x in raw.split(";") if x.strip()]
        except Exception:
            items = [x.strip() for x in raw.split(";") if x.strip()]
    bullets = "\n".join(f"- {x}" for x in items) if items else "β€”"
    return f"## {ICONS['presenting']} Presenting Problems\n{bullets}"

def md_clinical(entry: Dict[str, Any]) -> str:
    blocks = []
    mapping = [
        ("appearance", "Appearance"),
        ("behavior", "Behavior"),
        ("mood_affect", "Mood / Affect"),
        ("speech", "Speech"),
        ("thought_content", "Thought Content"),
        ("insight_judgment", "Insight & Judgment"),
        ("cognition", "Cognition"),
    ]
    for k, label in mapping:
        v = entry.get(k)
        if isinstance(v, str) and v.strip():
            blocks.append(f"**{label}**\n{_truncate(v)}")
    return f"## {ICONS['clinical']} Clinical Observations\n" + ("\n\n".join(blocks) if blocks else "β€”")

def md_history(entry: Dict[str, Any]) -> str:
    blocks = []
    mapping = [
        ("medical_developmental_history", "Medical / Developmental History"),
        ("family_history", "Family History"),
        ("educational_vocational_history", "Educational / Vocational History"),
    ]
    for k, label in mapping:
        v = entry.get(k)
        if isinstance(v, str) and v.strip():
            blocks.append(f"**{label}**\n{_truncate(v)}")
    return f"## {ICONS['history']} Life History\n" + ("\n\n".join(blocks) if blocks else "β€”")

def md_functioning(entry: Dict[str, Any]) -> str:
    blocks = []
    mapping = [
        ("emotional_behavioral_functioning", "Emotional / Behavioral Functioning"),
        ("social_functioning", "Social Functioning"),
    ]
    for k, label in mapping:
        v = entry.get(k)
        if isinstance(v, str) and v.strip():
            blocks.append(f"**{label}**\n{_truncate(v)}")
    return f"## {ICONS['functioning']} Functioning\n" + ("\n\n".join(blocks) if blocks else "β€”")

def md_summary(entry: Dict[str, Any]) -> str:
    v = entry.get("summary_of_psychological_profile")
    body = _truncate(v) if isinstance(v, str) and v.strip() else "β€”"
    return f"## {ICONS['summary']} Summary\n{body}"

def md_context(entry: Dict[str, Any]) -> str:
    arch_desc = entry.get("archetype_description") or entry.get("archetype_summary") or "β€”"
    memoir_title = entry.get("memoir")
    memoir_summary = entry.get("memoir_summary")
    memoir_narr = entry.get("memoir_narrative")

    title_line = f"**Memoir:** {memoir_title}\n\n" if isinstance(memoir_title, str) and memoir_title.strip() else ""
    sum_line = f"**Memoir Summary**\n{_truncate(memoir_summary)}\n\n" if isinstance(memoir_summary, str) and memoir_summary.strip() else ""
    narr_line = f"**Memoir Narrative**\n{_truncate(memoir_narr)}" if isinstance(memoir_narr, str) and memoir_narr.strip() else "β€”"

    return (
        f"## {ICONS['context']} Context\n"
        f"**Archetype Description**\n{_truncate(str(arch_desc)) if isinstance(arch_desc, str) else 'β€”'}\n\n"
        f"{title_line}{sum_line}{narr_line}"
    )

def md_metadata(entry: Dict[str, Any]) -> str:
    uid = _get(entry, "uid")
    return f"## {ICONS['metadata']} Metadata\n**UID:** {uid}"

def md_other_fields(entry: Dict[str, Any]) -> str:
    # Show any extra keys (e.g., concat_field, concat_embedding) not covered elsewhere
    known = set().union(*SECTION_FIELDS.values())
    other_keys = [k for k in entry.keys() if k not in known]
    if not other_keys:
        return f"## {ICONS['other']} Other Fields\nβ€”"
    pairs = []
    for k in sorted(other_keys):
        v = entry.get(k)
        if isinstance(v, (dict, list)):
            try:
                s = json.dumps(v, ensure_ascii=False)
            except Exception:
                s = str(v)
        else:
            s = str(v) if v is not None else ""
        pairs.append(f"- **{k}:** {_truncate(s)}")
    return f"## {ICONS['other']} Other Fields\n" + ("\n".join(pairs) if pairs else "β€”")

def show_entry(step=None):
    """Navigate entries and show persona entry"""
    global index, data
    if not data:
        return [""] * (11 + 11)

    if step == "Next":
        index = (index + 1) % len(data)
    elif step == "Previous":
        index = (index - 1) % len(data)
    elif step == "Random Shuffle":
        index = random.randint(0, len(data) - 1) % len(data)

    entry = data[index]
    p_uuid = entry.get("uuid", f"persona_{index}")
    
    if not entry:
        empty = "_No data_"
        # diagram HTML, then the sections
        return ["", empty, empty, empty, empty, empty, empty, empty, empty, empty]
    
    persona_out = [
        p_uuid,
        md_header(entry),
        md_categories(entry),
        md_presenting(entry),
        md_clinical(entry),
        md_history(entry),
        md_functioning(entry),
        md_summary(entry),
        md_context(entry),
        md_metadata(entry),
        md_other_fields(entry),
    ]

    # Reset rubric dropdowns to None
    resets = [None] * 11
    return persona_out + resets
    
    # persona_str = entry.get("persona_string", "").replace("\n", "<br>")
    # archetype = entry.get("archetype", "N/A")
    # persona_md = f"### πŸ‘€ Persona Summary\n**Archetype:** {archetype}\n\n{persona_str}"

# -----------------------------
# Gradio UI
# -----------------------------
with gr.Blocks() as demo:
    gr.Markdown("## Persona Annotation Tool")

    # File selection dropdown
    file_dropdown = gr.Dropdown(
        choices=available_files,
        value=available_files[0],
        label="Select Persona JSON File"
    )

    with gr.Row():
        prev_btn = gr.Button("Previous")
        next_btn = gr.Button("Next")
        shuffle_btn = gr.Button("Random Shuffle")

    phash_out = gr.Textbox(label="Persona Hash ID", interactive=False)
    # persona_out = gr.Markdown(label="Persona Description")
    md_header_out = gr.Markdown()
    md_cats_out = gr.Markdown()
    md_present_out = gr.Markdown()
    md_clinical_out = gr.Markdown()
    md_history_out = gr.Markdown()
    md_function_out = gr.Markdown()
    md_summary_out = gr.Markdown()
    md_context_out = gr.Markdown()
    md_meta_out = gr.Markdown()
    md_other_out = gr.Markdown()
    
    

    gr.Markdown("### Evaluation Rubric (0 = Worst, 5 = Best)")
    
    choices = [str(i) for i in range(6)]

    clarity = gr.Dropdown(choices=choices, label="Clarity", value=None)
    originality = gr.Dropdown(choices=choices, label="Originality", value=None)
    coherence = gr.Dropdown(choices=choices, label="Coherence", value=None)
    diversity = gr.Dropdown(choices=choices, label="Diversity", value=None)
    realism = gr.Dropdown(choices=choices, label="Realism", value=None)
    psychological_depth = gr.Dropdown(choices=choices, label="Psychological Depth (focus metric)", value=None)
    consistency = gr.Dropdown(choices=choices, label="Consistency", value=None)
    informativeness = gr.Dropdown(choices=choices, label="Informativeness", value=None)
    ethical_considerations = gr.Dropdown(choices=choices, label="Ethical Considerations (0–5)", value=None)
    demographic_fidelity = gr.Dropdown(choices=choices, label="Demographic Fidelity", value=None)
    overall_score = gr.Dropdown(choices=choices, label="Overall Score", value=None)

    save_btn = gr.Button("Save Annotation")
    save_status = gr.Textbox(label="Status", interactive=False)
    
    all_outputs = [
                    phash_out, md_header_out, md_cats_out, md_present_out, md_clinical_out,
                    md_history_out, md_function_out, md_summary_out, md_context_out,
                    md_meta_out, md_other_out,
                    clarity, originality, coherence, diversity, realism,
                    psychological_depth, consistency, informativeness,
                    ethical_considerations, demographic_fidelity, overall_score
                ]

    with gr.Row():
        export_btn = gr.Button("Download All Annotations")
        export_file = gr.File(label="Exported Annotations", type="filepath")

    # Wiring
    file_dropdown.change(load_file, inputs=file_dropdown, outputs=all_outputs)
    prev_btn.click(show_entry, inputs=gr.State("Previous"), outputs=all_outputs)
    next_btn.click(show_entry, inputs=gr.State("Next"), outputs=all_outputs)
    shuffle_btn.click(show_entry, inputs=gr.State("Random Shuffle"), outputs=all_outputs)

    save_btn.click(
        save_annotation,
        inputs=[phash_out, clarity, originality, coherence, diversity, realism,
                psychological_depth, consistency, informativeness,
                ethical_considerations, demographic_fidelity, overall_score],
        outputs=save_status
    )

    export_btn.click(export_annotations, inputs=None, outputs=export_file)

    demo.load(load_file, inputs=gr.State(available_files[0]), outputs=all_outputs)

demo.launch()