File size: 18,576 Bytes
5a65ad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
"""

Translation Module



This module provides text translation capabilities using multiple backends

including Google Translate API and local transformer models.

"""

import logging
import time
from typing import Dict, List, Optional, Union, Any
from abc import ABC, abstractmethod

from googletrans import Translator as GoogleTranslator, LANGUAGES
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline

from ..config import DEFAULT_TRANSLATION_SERVICE, SUPPORTED_LANGUAGES


class TranslationEngine(ABC):
    """Abstract base class for translation engines."""
    
    @abstractmethod
    def translate(self, text: str, source_lang: str, target_lang: str) -> Dict[str, Any]:
        """Translate text from source language to target language."""
        pass
    
    @abstractmethod
    def detect_language(self, text: str) -> Dict[str, Any]:
        """Detect the language of input text."""
        pass
    
    @abstractmethod
    def get_supported_languages(self) -> Dict[str, str]:
        """Get supported language codes and names."""
        pass


class GoogleTranslateEngine(TranslationEngine):
    """Google Translate API implementation."""
    
    def __init__(self, timeout: int = 10, retries: int = 3):
        """

        Initialize Google Translate engine.

        

        Args:

            timeout: Request timeout in seconds

            retries: Number of retry attempts

        """
        self.translator = GoogleTranslator()
        self.timeout = timeout
        self.retries = retries
        self.logger = logging.getLogger(__name__)
        
    def translate(self, text: str, source_lang: str, target_lang: str) -> Dict[str, Any]:
        """

        Translate text using Google Translate.

        

        Args:

            text: Text to translate

            source_lang: Source language code

            target_lang: Target language code

            

        Returns:

            Dictionary with translation results

        """
        if not text.strip():
            return {
                'text': text,
                'translated_text': text,
                'source_language': source_lang,
                'target_language': target_lang,
                'confidence': 1.0,
                'engine': 'google'
            }
        
        # Validate language codes
        self._validate_language_codes(source_lang, target_lang)
        
        for attempt in range(self.retries):
            try:
                self.logger.debug(f"Translating text (attempt {attempt + 1}): "
                                f"{source_lang} -> {target_lang}")
                
                # Perform translation
                result = self.translator.translate(
                    text, 
                    src=source_lang, 
                    dest=target_lang
                )
                
                # Extract results
                translation_result = {
                    'text': text,
                    'translated_text': result.text,
                    'source_language': result.src,
                    'target_language': target_lang,
                    'confidence': getattr(result, 'confidence', 0.95),
                    'engine': 'google',
                    'extra_data': result.extra_data if hasattr(result, 'extra_data') else {}
                }
                
                self.logger.debug(f"Translation successful: '{text}' -> '{result.text}'")
                return translation_result
                
            except Exception as e:
                self.logger.warning(f"Translation attempt {attempt + 1} failed: {str(e)}")
                if attempt == self.retries - 1:
                    raise RuntimeError(f"Translation failed after {self.retries} attempts: {str(e)}")
                time.sleep(1)  # Wait before retry
    
    def detect_language(self, text: str) -> Dict[str, Any]:
        """

        Detect language using Google Translate.

        

        Args:

            text: Text for language detection

            

        Returns:

            Dictionary with detection results

        """
        if not text.strip():
            return {
                'language': 'unknown',
                'confidence': 0.0,
                'engine': 'google'
            }
        
        try:
            detection = self.translator.detect(text)
            
            return {
                'language': detection.lang,
                'confidence': detection.confidence,
                'engine': 'google',
                'text': text
            }
            
        except Exception as e:
            self.logger.error(f"Language detection failed: {str(e)}")
            raise RuntimeError(f"Language detection failed: {str(e)}")
    
    def get_supported_languages(self) -> Dict[str, str]:
        """Get supported languages from Google Translate."""
        return LANGUAGES
    
    def _validate_language_codes(self, source_lang: str, target_lang: str) -> None:
        """Validate language codes."""
        supported_languages = self.get_supported_languages()
        
        if source_lang not in supported_languages and source_lang != 'auto':
            raise ValueError(f"Unsupported source language: {source_lang}")
        
        if target_lang not in supported_languages:
            raise ValueError(f"Unsupported target language: {target_lang}")


class LocalTranslationEngine(TranslationEngine):
    """Local transformer model implementation."""
    
    def __init__(self, model_name: Optional[str] = None, device: str = "auto"):
        """

        Initialize local translation engine.

        

        Args:

            model_name: Hugging Face model name (uses default if None)

            device: Device to run model on (auto, cpu, cuda)

        """
        self.device = self._setup_device(device)
        self.model_name = model_name or "Helsinki-NLP/opus-mt-en-mul"
        self.model = None
        self.tokenizer = None
        self.pipeline = None
        
        self.logger = logging.getLogger(__name__)
        
        # Language mapping for Helsinki models
        self.language_mapping = {
            'en': 'eng',
            'es': 'spa', 
            'fr': 'fra',
            'de': 'deu',
            'it': 'ita',
            'pt': 'por',
            'ru': 'rus'
        }
        
    def _setup_device(self, device: str) -> str:
        """Setup device configuration."""
        if device == "auto":
            return "cuda" if torch.cuda.is_available() else "cpu"
        return device
    
    def load_model(self) -> None:
        """Load the translation model."""
        try:
            self.logger.info(f"Loading translation model: {self.model_name}")
            
            # Load tokenizer and model
            self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
            self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name)
            
            # Move to device
            self.model = self.model.to(self.device)
            
            # Create pipeline for easier use
            self.pipeline = pipeline(
                "translation",
                model=self.model,
                tokenizer=self.tokenizer,
                device=0 if self.device == "cuda" else -1
            )
            
            self.logger.info("Translation model loaded successfully")
            
        except Exception as e:
            self.logger.error(f"Failed to load translation model: {str(e)}")
            raise RuntimeError(f"Model loading failed: {str(e)}")
    
    def translate(self, text: str, source_lang: str, target_lang: str) -> Dict[str, Any]:
        """

        Translate text using local model.

        

        Args:

            text: Text to translate

            source_lang: Source language code

            target_lang: Target language code

            

        Returns:

            Dictionary with translation results

        """
        if self.pipeline is None:
            self.load_model()
        
        if not text.strip():
            return {
                'text': text,
                'translated_text': text,
                'source_language': source_lang,
                'target_language': target_lang,
                'confidence': 1.0,
                'engine': 'local'
            }
        
        try:
            # Prepare input for Helsinki models (may need language prefixes)
            input_text = self._prepare_input(text, target_lang)
            
            # Perform translation
            results = self.pipeline(input_text, max_length=512)
            
            if isinstance(results, list) and len(results) > 0:
                translated_text = results[0]['translation_text']
            else:
                translated_text = results['translation_text']
            
            # Clean up output
            translated_text = self._clean_output(translated_text)
            
            return {
                'text': text,
                'translated_text': translated_text,
                'source_language': source_lang,
                'target_language': target_lang,
                'confidence': 0.85,  # Placeholder confidence for local models
                'engine': 'local',
                'model_name': self.model_name
            }
            
        except Exception as e:
            self.logger.error(f"Local translation failed: {str(e)}")
            raise RuntimeError(f"Local translation failed: {str(e)}")
    
    def _prepare_input(self, text: str, target_lang: str) -> str:
        """Prepare input text for translation (add language prefixes if needed)."""
        # For Helsinki models, may need to add target language prefix
        if "Helsinki-NLP" in self.model_name:
            # Some Helsinki models use language codes as prefixes
            mapped_lang = self.language_mapping.get(target_lang, target_lang)
            return f">>{mapped_lang}<< {text}"
        return text
    
    def _clean_output(self, text: str) -> str:
        """Clean translation output."""
        # Remove any language prefixes that might be in output
        for lang_code in self.language_mapping.values():
            prefix = f">>{lang_code}<< "
            if text.startswith(prefix):
                text = text[len(prefix):]
        return text.strip()
    
    def detect_language(self, text: str) -> Dict[str, Any]:
        """

        Detect language (placeholder - local models don't typically do detection).

        

        Args:

            text: Text for language detection

            

        Returns:

            Dictionary with detection results

        """
        # Most local translation models don't include language detection
        # This is a placeholder that could be enhanced with a separate detection model
        
        self.logger.warning("Language detection not implemented for local models")
        return {
            'language': 'unknown',
            'confidence': 0.0,
            'engine': 'local',
            'note': 'Language detection not available with local models'
        }
    
    def get_supported_languages(self) -> Dict[str, str]:
        """Get supported languages for local model."""
        # Return basic supported languages - could be enhanced by parsing model config
        return {code: name for code, name in SUPPORTED_LANGUAGES.items() 
                if code in self.language_mapping}


class TranslationService:
    """Main translation service that manages multiple engines."""
    
    def __init__(

        self, 

        primary_engine: str = DEFAULT_TRANSLATION_SERVICE,

        fallback_engine: Optional[str] = None

    ):
        """

        Initialize translation service.

        

        Args:

            primary_engine: Primary translation engine ('google' or 'local')

            fallback_engine: Fallback engine if primary fails

        """
        self.primary_engine_name = primary_engine
        self.fallback_engine_name = fallback_engine
        
        self.engines = {}
        self.logger = logging.getLogger(__name__)
        
        # Initialize engines
        self._initialize_engines()
    
    def _initialize_engines(self) -> None:
        """Initialize translation engines."""
        try:
            # Initialize Google Translate engine
            self.engines['google'] = GoogleTranslateEngine()
            self.logger.info("Google Translate engine initialized")
            
        except Exception as e:
            self.logger.warning(f"Failed to initialize Google Translate: {str(e)}")
        
        try:
            # Initialize local engine
            self.engines['local'] = LocalTranslationEngine()
            self.logger.info("Local translation engine initialized")
            
        except Exception as e:
            self.logger.warning(f"Failed to initialize local engine: {str(e)}")
    
    def translate(

        self, 

        text: str, 

        source_lang: str, 

        target_lang: str,

        engine: Optional[str] = None

    ) -> Dict[str, Any]:
        """

        Translate text with automatic fallback.

        

        Args:

            text: Text to translate

            source_lang: Source language code

            target_lang: Target language code

            engine: Specific engine to use (optional)

            

        Returns:

            Dictionary with translation results

        """
        # Determine which engine to use
        engine_name = engine or self.primary_engine_name
        
        # Try primary engine
        try:
            if engine_name in self.engines:
                return self.engines[engine_name].translate(text, source_lang, target_lang)
            else:
                raise ValueError(f"Engine '{engine_name}' not available")
                
        except Exception as e:
            self.logger.warning(f"Primary engine '{engine_name}' failed: {str(e)}")
            
            # Try fallback engine if available
            if (self.fallback_engine_name and 
                self.fallback_engine_name in self.engines and 
                self.fallback_engine_name != engine_name):
                
                try:
                    self.logger.info(f"Trying fallback engine: {self.fallback_engine_name}")
                    return self.engines[self.fallback_engine_name].translate(
                        text, source_lang, target_lang
                    )
                except Exception as fallback_error:
                    self.logger.error(f"Fallback engine also failed: {str(fallback_error)}")
            
            # If all engines fail, raise the original error
            raise RuntimeError(f"Translation failed: {str(e)}")
    
    def detect_language(self, text: str, engine: Optional[str] = None) -> Dict[str, Any]:
        """

        Detect text language.

        

        Args:

            text: Text for language detection

            engine: Specific engine to use (optional)

            

        Returns:

            Dictionary with detection results

        """
        engine_name = engine or self.primary_engine_name
        
        if engine_name in self.engines:
            return self.engines[engine_name].detect_language(text)
        else:
            raise ValueError(f"Engine '{engine_name}' not available")
    
    def batch_translate(

        self, 

        texts: List[str], 

        source_lang: str, 

        target_lang: str,

        engine: Optional[str] = None

    ) -> List[Dict[str, Any]]:
        """

        Translate multiple texts.

        

        Args:

            texts: List of texts to translate

            source_lang: Source language code

            target_lang: Target language code

            engine: Specific engine to use (optional)

            

        Returns:

            List of translation results

        """
        results = []
        
        for i, text in enumerate(texts):
            try:
                self.logger.debug(f"Translating text {i+1}/{len(texts)}")
                result = self.translate(text, source_lang, target_lang, engine)
                results.append(result)
                
            except Exception as e:
                self.logger.error(f"Failed to translate text {i+1}: {str(e)}")
                # Add error result
                results.append({
                    'text': text,
                    'translated_text': text,  # Fallback to original
                    'source_language': source_lang,
                    'target_language': target_lang,
                    'confidence': 0.0,
                    'engine': 'error',
                    'error': str(e)
                })
        
        return results
    
    def get_available_engines(self) -> List[str]:
        """Get list of available engines."""
        return list(self.engines.keys())
    
    def get_supported_languages(self, engine: Optional[str] = None) -> Dict[str, str]:
        """

        Get supported languages.

        

        Args:

            engine: Specific engine (uses primary if None)

            

        Returns:

            Dictionary of language codes and names

        """
        engine_name = engine or self.primary_engine_name
        
        if engine_name in self.engines:
            return self.engines[engine_name].get_supported_languages()
        else:
            return SUPPORTED_LANGUAGES


# Utility functions
def create_translation_service(

    primary_engine: str = DEFAULT_TRANSLATION_SERVICE,

    fallback_engine: str = "google"

) -> TranslationService:
    """Create and initialize translation service."""
    return TranslationService(primary_engine, fallback_engine)


def quick_translate(

    text: str, 

    source_lang: str, 

    target_lang: str, 

    engine: str = DEFAULT_TRANSLATION_SERVICE

) -> str:
    """Quick translation function for simple use cases."""
    service = create_translation_service(primary_engine=engine)
    result = service.translate(text, source_lang, target_lang)
    return result['translated_text']