Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -18,6 +18,57 @@ os.environ["MKL_NUM_THREADS"] = str(psutil.cpu_count(logical=False))
|
|
| 18 |
# Set device globally
|
| 19 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
# Set page configuration
|
| 22 |
st.set_page_config(
|
| 23 |
page_title="SemViQA - Hệ thống Kiểm chứng Thông tin Tiếng Việt",
|
|
|
|
| 18 |
# Set device globally
|
| 19 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
|
| 21 |
+
@st.cache_data
|
| 22 |
+
def preprocess_text(text):
|
| 23 |
+
# Add any text cleaning or normalization here
|
| 24 |
+
return text.strip()
|
| 25 |
+
|
| 26 |
+
# Optimized function for evidence extraction and classification with better CPU performance
|
| 27 |
+
def perform_verification(claim, context, model_qatc, tokenizer_qatc, model_tc, tokenizer_tc,
|
| 28 |
+
model_bc, tokenizer_bc, tfidf_threshold, length_ratio_threshold):
|
| 29 |
+
# Extract evidence
|
| 30 |
+
evidence_start_time = time.time()
|
| 31 |
+
evidence = extract_evidence_tfidf_qatc(
|
| 32 |
+
claim, context, model_qatc, tokenizer_qatc,
|
| 33 |
+
DEVICE,
|
| 34 |
+
confidence_threshold=tfidf_threshold,
|
| 35 |
+
length_ratio_threshold=length_ratio_threshold
|
| 36 |
+
)
|
| 37 |
+
evidence_time = time.time() - evidence_start_time
|
| 38 |
+
|
| 39 |
+
# Explicit garbage collection after evidence extraction
|
| 40 |
+
gc.collect()
|
| 41 |
+
|
| 42 |
+
# Classify the claim
|
| 43 |
+
verdict_start_time = time.time()
|
| 44 |
+
with torch.no_grad():
|
| 45 |
+
verdict = "NEI"
|
| 46 |
+
prob3class, pred_tc = classify_claim(
|
| 47 |
+
claim, evidence, model_tc, tokenizer_tc, DEVICE
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# Only run binary classifier if needed
|
| 51 |
+
prob2class, pred_bc = 0, 0
|
| 52 |
+
if pred_tc != 0:
|
| 53 |
+
prob2class, pred_bc = classify_claim(
|
| 54 |
+
claim, evidence, model_bc, tokenizer_bc, DEVICE
|
| 55 |
+
)
|
| 56 |
+
verdict = "SUPPORTED" if pred_bc == 0 else "REFUTED" if prob2class > prob3class else ["NEI", "SUPPORTED", "REFUTED"][pred_tc]
|
| 57 |
+
|
| 58 |
+
verdict_time = time.time() - verdict_start_time
|
| 59 |
+
|
| 60 |
+
return {
|
| 61 |
+
"evidence": evidence,
|
| 62 |
+
"verdict": verdict,
|
| 63 |
+
"evidence_time": evidence_time,
|
| 64 |
+
"verdict_time": verdict_time,
|
| 65 |
+
"prob3class": prob3class.item() if isinstance(prob3class, torch.Tensor) else prob3class,
|
| 66 |
+
"pred_tc": pred_tc,
|
| 67 |
+
"prob2class": prob2class.item() if isinstance(prob2class, torch.Tensor) else prob2class,
|
| 68 |
+
"pred_bc": pred_bc
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
|
| 72 |
# Set page configuration
|
| 73 |
st.set_page_config(
|
| 74 |
page_title="SemViQA - Hệ thống Kiểm chứng Thông tin Tiếng Việt",
|