Spaces:
Sleeping
Sleeping
Eslam Magdy
commited on
Update main.py
Browse files
main.py
CHANGED
|
@@ -3,6 +3,13 @@ import urllib
|
|
| 3 |
import json
|
| 4 |
from fastapi import FastAPI, HTTPException, Query
|
| 5 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
app = FastAPI()
|
| 8 |
|
|
@@ -15,12 +22,36 @@ app.add_middleware(
|
|
| 15 |
allow_headers=["*"],
|
| 16 |
)
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
@app.get("/e5_embeddings")
|
| 21 |
def e5_embeddings(query: str = Query(...)):
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
| 24 |
else:
|
| 25 |
-
|
| 26 |
-
|
|
|
|
| 3 |
import json
|
| 4 |
from fastapi import FastAPI, HTTPException, Query
|
| 5 |
from fastapi.middleware.cors import CORSMiddleware
|
| 6 |
+
from transformers import AutoTokenizer, AutoModel
|
| 7 |
+
import torch
|
| 8 |
+
from torch import Tensor
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
|
| 11 |
+
import os
|
| 12 |
+
os.environ['HF_HOME'] = '/'
|
| 13 |
|
| 14 |
app = FastAPI()
|
| 15 |
|
|
|
|
| 22 |
allow_headers=["*"],
|
| 23 |
)
|
| 24 |
|
| 25 |
+
model_name = "intfloat/multilingual-e5-large"
|
| 26 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 27 |
+
model = AutoModel.from_pretrained(model_name)
|
| 28 |
+
|
| 29 |
+
def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
|
| 30 |
+
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
|
| 31 |
+
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
| 32 |
+
|
| 33 |
+
def embed_single_text(text: str) -> Tensor:
|
| 34 |
+
tokenizer = AutoTokenizer.from_pretrained('intfloat/multilingual-e5-large')
|
| 35 |
+
model = AutoModel.from_pretrained('intfloat/multilingual-e5-large').cpu()
|
| 36 |
+
|
| 37 |
+
batch_dict = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt')
|
| 38 |
+
|
| 39 |
+
with torch.no_grad():
|
| 40 |
+
outputs = model(**batch_dict)
|
| 41 |
+
|
| 42 |
+
embedding = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
| 43 |
+
|
| 44 |
+
embedding = F.normalize(embedding, p=2, dim=1)
|
| 45 |
+
|
| 46 |
+
return embedding
|
| 47 |
|
| 48 |
|
| 49 |
@app.get("/e5_embeddings")
|
| 50 |
def e5_embeddings(query: str = Query(...)):
|
| 51 |
+
|
| 52 |
+
result = embed_single_text(query)
|
| 53 |
+
|
| 54 |
+
if result:
|
| 55 |
+
return json.loads(result)
|
| 56 |
else:
|
| 57 |
+
raise HTTPException(status_code=500)
|
|
|