Update app.py
Browse filesAdded JSON to api
app.py
CHANGED
|
@@ -1,30 +1,305 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
googel_api=os.getenv("google_api")
|
| 5 |
|
| 6 |
|
| 7 |
|
| 8 |
-
# Your existing functions: read_pdf, generate, showdata
|
| 9 |
def read_pdf(pdf_path):
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
"
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
},
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
def showdata(lab_tests):
|
| 30 |
df = pd.DataFrame(lab_tests)
|
|
@@ -33,17 +308,19 @@ def showdata(lab_tests):
|
|
| 33 |
# Gradio interface function
|
| 34 |
def process_pdf(pdf):
|
| 35 |
text = read_pdf(pdf.name) # Extract text from PDF
|
| 36 |
-
|
| 37 |
|
|
|
|
| 38 |
metadata = json_data["metadata"]
|
|
|
|
|
|
|
| 39 |
metadata_str = f"**Patient Name:** {metadata['patient_name']}\n\n" \
|
| 40 |
f"**Age:** {metadata['age']}\n\n" \
|
| 41 |
f"**Gender:** {metadata['gender']}\n\n" \
|
| 42 |
f"**Lab Name:** {metadata['lab_name']}\n\n" \
|
| 43 |
f"**Report Date:** {metadata['report_date']}"
|
| 44 |
|
| 45 |
-
|
| 46 |
-
return metadata_str, lab_tests_df
|
| 47 |
|
| 48 |
# Define Gradio interface
|
| 49 |
with gr.Blocks() as demo:
|
|
@@ -58,5 +335,9 @@ with gr.Blocks() as demo:
|
|
| 58 |
|
| 59 |
submit_btn.click(process_pdf, inputs=[pdf_input], outputs=[metadata_output, lab_test_output])
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
# Launch the app
|
| 62 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import os
|
| 4 |
+
import fitz
|
| 5 |
+
import pytesseract
|
| 6 |
+
import base64
|
| 7 |
+
from google import genai
|
| 8 |
+
from google.genai import types
|
| 9 |
+
|
| 10 |
googel_api=os.getenv("google_api")
|
| 11 |
|
| 12 |
|
| 13 |
|
|
|
|
| 14 |
def read_pdf(pdf_path):
|
| 15 |
+
text = ""
|
| 16 |
+
doc = fitz.open(pdf_path)
|
| 17 |
+
for page_num in range(len(doc)):
|
| 18 |
+
page = doc.load_page(page_num)
|
| 19 |
+
page_text = page.get_text()
|
| 20 |
+
if page_text.strip():
|
| 21 |
+
text += page_text + "\n"
|
| 22 |
+
else:
|
| 23 |
+
# print(f"Image found in Page {page_num + 1} Performing OCR...")
|
| 24 |
+
images = convert_from_path(pdf_path, first_page=page_num + 1, last_page=page_num + 1)
|
| 25 |
+
for img in images:
|
| 26 |
+
text += pytesseract.image_to_string(img) + "\n"
|
| 27 |
+
# print(f"Extracted text preview:\n{text[:600]}...")
|
| 28 |
+
return text.strip()
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def generate(extracted_text):
|
| 34 |
+
client = genai.Client(
|
| 35 |
+
api_key=google_api,
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
model = "gemini-2.0-flash"
|
| 39 |
+
contents = [
|
| 40 |
+
types.Content(
|
| 41 |
+
role="user",
|
| 42 |
+
parts=[
|
| 43 |
+
types.Part.from_text(text="""The following text is extracted from a medical lab report using OCR.
|
| 44 |
+
There may be errors such as missing decimals, incorrect test names, and incorrect reference ranges.
|
| 45 |
+
Please correct the errors and extract both metadata and structured lab test data.
|
| 46 |
+
ALWAYS MAKE SURE THAT THE VALUE ALIGNS WITH THE REAL RANGE OF THE TEST
|
| 47 |
+
AND CLEARLY IDENTIFY REDS WITH LOW AND HIGH
|
| 48 |
+
Return the output in structured JSON format with all the information in lowercase to standardization.
|
| 49 |
+
And follow the JSON format provided and don't add any additional details in meta data or lab report other than that are specified
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
Extracted Text:
|
| 53 |
+
Dr. Onkar Test Sanjeevan Hospital\\n\\nMBBS, MD | Reg No: T123 12/4, Paud Road, Kothrud, Pune - 411023\\nPh: 0202526245, 8983390126, Timing: 09:15 AM -\\n02:30 PM, 05:30 PM - 09:30 PM, APPOINTMENTS\\nONLY | Closed: Monday,Friday\\n\\n \\n\\nPatient UID: 87 Report No: 00018\\n\\nName: AMAR SHAHA (Male} Rey, Date: 09-Jul-20\\n\\nAge 40 years Sample Collected At Hospital Lab\\n\\nAddress: MG Road, PUNE Sample Type/Quantity: Blood\\n\\nRef. By Doctor . Sample Collection D/T: 09-Jul-20, 9.50 AM\\nCr Test Result D/T: 09-Jul-20, 4:53 PM\\n\\n \\n \\n\\nDr. Amit Deshmukh\\n\\n \\n\\nHEMOGRAM\\n\\nINVESTIGATION RESULT UNIT REF, RANGE\\nHAEMOGLOBIN : 14 gms/dl 12.0 - 17.0\\nRBC COUNT E 44 millfeumm 4.1-5.1\\nHAEMOTOCRIT (PCV) E 30 % 32.0 - 47.0\\nMCV $ 78 fl 760 - 100.0\\nMCH H 3246 Py 260-320\\nMCHC | : 328 n% 315-3465 ,\\nROW ; 13.9 % 11.6-150\\nMPV ; 11.2 fn 68- 12.6\\nWBC COUNT : 4567 /eamm 4000 - 11000\\nDIFFERENTIAL COUNT\\nNEUTROPHILS |» : 56 %y 40-70\\nLYMPHOCYTES ; 20 % 20.0- 45.0\\nEOSINOPHILS . 4 « % 0-6\\nMONOCYTES : 5 %
|
| 54 |
+
|
| 55 |
+
Expected JSON format:
|
| 56 |
+
{
|
| 57 |
+
\"metadata\": {
|
| 58 |
+
\"patient_name\": \"Prasahsst Pawar\",
|
| 59 |
+
\"age\": \"20\",
|
| 60 |
+
\"gender\": \"Male\",
|
| 61 |
+
\"lab_name\": \"XYZ Diagnostics\",
|
| 62 |
+
\"report_date\": \"05-03-2025\"
|
| 63 |
+
},
|
| 64 |
+
\"lab_tests\": [
|
| 65 |
+
{
|
| 66 |
+
\"test_name\": \"hemoglobin\",
|
| 67 |
+
\"value\": \"14.2\",
|
| 68 |
+
\"unit\": \"g/dL\",
|
| 69 |
+
\"reference_range\": \"13.5 - 17.5 g/dL\"
|
| 70 |
},
|
| 71 |
+
{
|
| 72 |
+
\"test_name\": \"rbc count\",
|
| 73 |
+
\"value\": \"5.2\",
|
| 74 |
+
\"unit\": \"million/cu mm\",
|
| 75 |
+
\"reference_range\": \"4.1-5.1\"
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
\"test_name\": \"glucose\",
|
| 79 |
+
\"value\": \"65\",
|
| 80 |
+
\"unit\": \"mg/dL\",
|
| 81 |
+
\"reference_range\": \"70 - 110 mg/dL\"
|
| 82 |
+
}
|
| 83 |
+
],
|
| 84 |
+
\"reds\":{
|
| 85 |
+
\"low\":[\"glucose\"],
|
| 86 |
+
\"high\":[\"rbc count\"]
|
| 87 |
+
}
|
| 88 |
+
}"""),
|
| 89 |
+
],
|
| 90 |
+
),
|
| 91 |
+
types.Content(
|
| 92 |
+
role="model",
|
| 93 |
+
parts=[
|
| 94 |
+
types.Part.from_text(text="""{
|
| 95 |
+
\"lab_tests\": [
|
| 96 |
+
{
|
| 97 |
+
\"reference_range\": \"12.0 - 17.0\",
|
| 98 |
+
\"test_name\": \"haemoglobin\",
|
| 99 |
+
\"unit\": \"gms/dl\",
|
| 100 |
+
\"value\": \"14\"
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
\"reference_range\": \"4.1-5.1\",
|
| 104 |
+
\"test_name\": \"rbc count\",
|
| 105 |
+
\"unit\": \"mill/cu mm\",
|
| 106 |
+
\"value\": \"4.4\"
|
| 107 |
+
},
|
| 108 |
+
{
|
| 109 |
+
\"reference_range\": \"32.0 - 47.0\",
|
| 110 |
+
\"test_name\": \"haematocrit (pcv)\",
|
| 111 |
+
\"unit\": \"%\",
|
| 112 |
+
\"value\": \"30\"
|
| 113 |
+
},
|
| 114 |
+
{
|
| 115 |
+
\"reference_range\": \"76.0 - 100.0\",
|
| 116 |
+
\"test_name\": \"mcv\",
|
| 117 |
+
\"unit\": \"fl\",
|
| 118 |
+
\"value\": \"78\"
|
| 119 |
+
},
|
| 120 |
+
{
|
| 121 |
+
\"reference_range\": \"26.0-32.0\",
|
| 122 |
+
\"test_name\": \"mch\",
|
| 123 |
+
\"unit\": \"pg\",
|
| 124 |
+
\"value\": \"32.46\"
|
| 125 |
+
},
|
| 126 |
+
{
|
| 127 |
+
\"reference_range\": \"31.5-34.5\",
|
| 128 |
+
\"test_name\": \"mchc\",
|
| 129 |
+
\"unit\": \"%\",
|
| 130 |
+
\"value\": \"32.8\"
|
| 131 |
+
},
|
| 132 |
+
{
|
| 133 |
+
\"reference_range\": \"11.6-15.0\",
|
| 134 |
+
\"test_name\": \"rdw\",
|
| 135 |
+
\"unit\": \"%\",
|
| 136 |
+
\"value\": \"13.9\"
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
\"reference_range\": \"6.8- 12.6\",
|
| 140 |
+
\"test_name\": \"mpv\",
|
| 141 |
+
\"unit\": \"fn\",
|
| 142 |
+
\"value\": \"11.2\"
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
\"reference_range\": \"4000 - 11000\",
|
| 146 |
+
\"test_name\": \"wbc count\",
|
| 147 |
+
\"unit\": \"/cu mm\",
|
| 148 |
+
\"value\": \"4567\"
|
| 149 |
+
},
|
| 150 |
+
{
|
| 151 |
+
\"reference_range\": \"40-70\",
|
| 152 |
+
\"test_name\": \"neutrophils\",
|
| 153 |
+
\"unit\": \"%\",
|
| 154 |
+
\"value\": \"56\"
|
| 155 |
+
},
|
| 156 |
+
{
|
| 157 |
+
\"reference_range\": \"20.0- 45.0\",
|
| 158 |
+
\"test_name\": \"lymphocytes\",
|
| 159 |
+
\"unit\": \"%\",
|
| 160 |
+
\"value\": \"20\"
|
| 161 |
+
},
|
| 162 |
+
{
|
| 163 |
+
\"reference_range\": \"0-6\",
|
| 164 |
+
\"test_name\": \"eosinophils\",
|
| 165 |
+
\"unit\": \"%\",
|
| 166 |
+
\"value\": \"4\"
|
| 167 |
+
},
|
| 168 |
+
{
|
| 169 |
+
\"reference_range\": \"2-10\",
|
| 170 |
+
\"test_name\": \"monocytes\",
|
| 171 |
+
\"unit\": \"%\",
|
| 172 |
+
\"value\": \"5\"
|
| 173 |
}
|
| 174 |
+
],
|
| 175 |
+
\"metadata\": {
|
| 176 |
+
\"age\": \"40\",
|
| 177 |
+
\"gender\": \"male\",
|
| 178 |
+
\"lab_name\": \"sanjeevan hospital\",
|
| 179 |
+
\"patient_name\": \"amar shaha\",
|
| 180 |
+
\"report_date\": \"09-jul-20\"
|
| 181 |
+
},
|
| 182 |
+
\"reds\": {
|
| 183 |
+
\"high\": [
|
| 184 |
+
\"mch\"
|
| 185 |
+
],
|
| 186 |
+
\"low\": [
|
| 187 |
+
\"haematocrit (pcv)\"
|
| 188 |
+
]
|
| 189 |
+
}
|
| 190 |
+
}"""),
|
| 191 |
+
],
|
| 192 |
+
),
|
| 193 |
+
types.Content(
|
| 194 |
+
role="user",
|
| 195 |
+
parts=[
|
| 196 |
+
types.Part.from_text(text=extracted_text),
|
| 197 |
+
],
|
| 198 |
+
),
|
| 199 |
+
]
|
| 200 |
+
generate_content_config = types.GenerateContentConfig(
|
| 201 |
+
temperature=1,
|
| 202 |
+
top_p=0.95,
|
| 203 |
+
top_k=40,
|
| 204 |
+
max_output_tokens=8192,
|
| 205 |
+
response_mime_type="application/json",
|
| 206 |
+
response_schema=genai.types.Schema(
|
| 207 |
+
type = genai.types.Type.OBJECT,
|
| 208 |
+
enum = [],
|
| 209 |
+
required = ["metadata", "lab_tests", "reds"],
|
| 210 |
+
properties = {
|
| 211 |
+
"metadata": genai.types.Schema(
|
| 212 |
+
type = genai.types.Type.OBJECT,
|
| 213 |
+
enum = [],
|
| 214 |
+
required = ["patient_name", "age", "gender", "lab_name", "report_date"],
|
| 215 |
+
properties = {
|
| 216 |
+
"patient_name": genai.types.Schema(
|
| 217 |
+
type = genai.types.Type.STRING,
|
| 218 |
+
),
|
| 219 |
+
"age": genai.types.Schema(
|
| 220 |
+
type = genai.types.Type.STRING,
|
| 221 |
+
),
|
| 222 |
+
"gender": genai.types.Schema(
|
| 223 |
+
type = genai.types.Type.STRING,
|
| 224 |
+
),
|
| 225 |
+
"lab_name": genai.types.Schema(
|
| 226 |
+
type = genai.types.Type.STRING,
|
| 227 |
+
),
|
| 228 |
+
"report_date": genai.types.Schema(
|
| 229 |
+
type = genai.types.Type.STRING,
|
| 230 |
+
),
|
| 231 |
+
},
|
| 232 |
+
),
|
| 233 |
+
"lab_tests": genai.types.Schema(
|
| 234 |
+
type = genai.types.Type.ARRAY,
|
| 235 |
+
items = genai.types.Schema(
|
| 236 |
+
type = genai.types.Type.OBJECT,
|
| 237 |
+
enum = [],
|
| 238 |
+
required = ["test_name", "value", "unit", "reference_range"],
|
| 239 |
+
properties = {
|
| 240 |
+
"test_name": genai.types.Schema(
|
| 241 |
+
type = genai.types.Type.STRING,
|
| 242 |
+
),
|
| 243 |
+
"value": genai.types.Schema(
|
| 244 |
+
type = genai.types.Type.STRING,
|
| 245 |
+
),
|
| 246 |
+
"unit": genai.types.Schema(
|
| 247 |
+
type = genai.types.Type.STRING,
|
| 248 |
+
),
|
| 249 |
+
"reference_range": genai.types.Schema(
|
| 250 |
+
type = genai.types.Type.STRING,
|
| 251 |
+
),
|
| 252 |
+
},
|
| 253 |
+
),
|
| 254 |
+
),
|
| 255 |
+
"reds": genai.types.Schema(
|
| 256 |
+
type = genai.types.Type.OBJECT,
|
| 257 |
+
enum = [],
|
| 258 |
+
required = ["low", "high"],
|
| 259 |
+
properties = {
|
| 260 |
+
"low": genai.types.Schema(
|
| 261 |
+
type = genai.types.Type.ARRAY,
|
| 262 |
+
items = genai.types.Schema(
|
| 263 |
+
type = genai.types.Type.STRING,
|
| 264 |
+
),
|
| 265 |
+
),
|
| 266 |
+
"high": genai.types.Schema(
|
| 267 |
+
type = genai.types.Type.ARRAY,
|
| 268 |
+
items = genai.types.Schema(
|
| 269 |
+
type = genai.types.Type.STRING,
|
| 270 |
+
),
|
| 271 |
+
),
|
| 272 |
+
},
|
| 273 |
+
),
|
| 274 |
+
},
|
| 275 |
+
),
|
| 276 |
+
system_instruction=[
|
| 277 |
+
types.Part.from_text(text="""Always return the output as JSON only"""),
|
| 278 |
+
],
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
# for chunk in client.models.generate_content_stream(
|
| 284 |
+
# model=model,
|
| 285 |
+
# contents=contents,
|
| 286 |
+
# config=generate_content_config,
|
| 287 |
+
# ):
|
| 288 |
+
# print(chunk.text, end="")
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
response = client.models.generate_content(
|
| 292 |
+
model=model,
|
| 293 |
+
contents=contents,
|
| 294 |
+
config=generate_content_config,
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
json_response = response.text # The API should return JSON text
|
| 298 |
+
parsed_json = json.loads(json_response) # Convert JSON string to Python dictionary
|
| 299 |
+
|
| 300 |
+
return parsed_json
|
| 301 |
+
|
| 302 |
+
|
| 303 |
|
| 304 |
def showdata(lab_tests):
|
| 305 |
df = pd.DataFrame(lab_tests)
|
|
|
|
| 308 |
# Gradio interface function
|
| 309 |
def process_pdf(pdf):
|
| 310 |
text = read_pdf(pdf.name) # Extract text from PDF
|
| 311 |
+
output = generate(text) # Generate structured JSON
|
| 312 |
|
| 313 |
+
labtests=pd.DataFrame(output["lab_tests"])
|
| 314 |
metadata = json_data["metadata"]
|
| 315 |
+
reds=pd.DataFrame(output["reds"])
|
| 316 |
+
|
| 317 |
metadata_str = f"**Patient Name:** {metadata['patient_name']}\n\n" \
|
| 318 |
f"**Age:** {metadata['age']}\n\n" \
|
| 319 |
f"**Gender:** {metadata['gender']}\n\n" \
|
| 320 |
f"**Lab Name:** {metadata['lab_name']}\n\n" \
|
| 321 |
f"**Report Date:** {metadata['report_date']}"
|
| 322 |
|
| 323 |
+
return metadata_str, labtests, output
|
|
|
|
| 324 |
|
| 325 |
# Define Gradio interface
|
| 326 |
with gr.Blocks() as demo:
|
|
|
|
| 335 |
|
| 336 |
submit_btn.click(process_pdf, inputs=[pdf_input], outputs=[metadata_output, lab_test_output])
|
| 337 |
|
| 338 |
+
# Add API access but only expose JSON
|
| 339 |
+
demo.api(process_pdf, inputs=[gr.File(type="file")], outputs=gr.JSON(), route="/process")
|
| 340 |
+
|
| 341 |
+
|
| 342 |
# Launch the app
|
| 343 |
demo.launch()
|