Spaces:
Running
Running
Upload prefix-tuning-clm.ipynb
Browse files- prefix-tuning-clm.ipynb +1389 -0
prefix-tuning-clm.ipynb
ADDED
|
@@ -0,0 +1,1389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 2,
|
| 6 |
+
"id": "71fbfca2",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"from transformers import AutoModelForCausalLM\n",
|
| 11 |
+
"from peft import get_peft_config, get_peft_model, PrefixTuningConfig, TaskType, PeftType\n",
|
| 12 |
+
"import torch\n",
|
| 13 |
+
"from datasets import load_dataset\n",
|
| 14 |
+
"import os\n",
|
| 15 |
+
"from transformers import AutoTokenizer\n",
|
| 16 |
+
"from torch.utils.data import DataLoader\n",
|
| 17 |
+
"from transformers import default_data_collator, get_linear_schedule_with_warmup\n",
|
| 18 |
+
"from tqdm import tqdm\n",
|
| 19 |
+
"from datasets import load_dataset\n",
|
| 20 |
+
"\n",
|
| 21 |
+
"device = \"cuda\"\n",
|
| 22 |
+
"model_name_or_path = \"bigscience/bloomz-560m\"\n",
|
| 23 |
+
"tokenizer_name_or_path = \"bigscience/bloomz-560m\"\n",
|
| 24 |
+
"peft_config = PrefixTuningConfig(task_type=TaskType.CAUSAL_LM, num_virtual_tokens=30)\n",
|
| 25 |
+
"\n",
|
| 26 |
+
"dataset_name = \"twitter_complaints\"\n",
|
| 27 |
+
"checkpoint_name = f\"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}_v1.pt\".replace(\n",
|
| 28 |
+
" \"/\", \"_\"\n",
|
| 29 |
+
")\n",
|
| 30 |
+
"text_column = \"Tweet text\"\n",
|
| 31 |
+
"label_column = \"text_label\"\n",
|
| 32 |
+
"max_length = 64\n",
|
| 33 |
+
"lr = 3e-2\n",
|
| 34 |
+
"num_epochs = 50\n",
|
| 35 |
+
"batch_size = 8"
|
| 36 |
+
]
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"cell_type": "code",
|
| 40 |
+
"execution_count": 3,
|
| 41 |
+
"id": "e1a3648b",
|
| 42 |
+
"metadata": {},
|
| 43 |
+
"outputs": [
|
| 44 |
+
{
|
| 45 |
+
"name": "stderr",
|
| 46 |
+
"output_type": "stream",
|
| 47 |
+
"text": [
|
| 48 |
+
"Found cached dataset raft (/home/sourab/.cache/huggingface/datasets/ought___raft/twitter_complaints/1.1.0/79c4de1312c1e3730043f7db07179c914f48403101f7124e2fe336f6f54d9f84)\n"
|
| 49 |
+
]
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
"data": {
|
| 53 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 54 |
+
"model_id": "56d9908a2c8944b484348cc46b16a261",
|
| 55 |
+
"version_major": 2,
|
| 56 |
+
"version_minor": 0
|
| 57 |
+
},
|
| 58 |
+
"text/plain": [
|
| 59 |
+
" 0%| | 0/2 [00:00<?, ?it/s]"
|
| 60 |
+
]
|
| 61 |
+
},
|
| 62 |
+
"metadata": {},
|
| 63 |
+
"output_type": "display_data"
|
| 64 |
+
},
|
| 65 |
+
{
|
| 66 |
+
"name": "stderr",
|
| 67 |
+
"output_type": "stream",
|
| 68 |
+
"text": [
|
| 69 |
+
"Loading cached processed dataset at /home/sourab/.cache/huggingface/datasets/ought___raft/twitter_complaints/1.1.0/79c4de1312c1e3730043f7db07179c914f48403101f7124e2fe336f6f54d9f84/cache-20a7622c86d80cdf.arrow\n",
|
| 70 |
+
"Loading cached processed dataset at /home/sourab/.cache/huggingface/datasets/ought___raft/twitter_complaints/1.1.0/79c4de1312c1e3730043f7db07179c914f48403101f7124e2fe336f6f54d9f84/cache-5f1431311da05803.arrow\n"
|
| 71 |
+
]
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
"name": "stdout",
|
| 75 |
+
"output_type": "stream",
|
| 76 |
+
"text": [
|
| 77 |
+
"['Unlabeled', 'complaint', 'no complaint']\n",
|
| 78 |
+
"DatasetDict({\n",
|
| 79 |
+
" train: Dataset({\n",
|
| 80 |
+
" features: ['Tweet text', 'ID', 'Label', 'text_label'],\n",
|
| 81 |
+
" num_rows: 50\n",
|
| 82 |
+
" })\n",
|
| 83 |
+
" test: Dataset({\n",
|
| 84 |
+
" features: ['Tweet text', 'ID', 'Label', 'text_label'],\n",
|
| 85 |
+
" num_rows: 3399\n",
|
| 86 |
+
" })\n",
|
| 87 |
+
"})\n"
|
| 88 |
+
]
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"data": {
|
| 92 |
+
"text/plain": [
|
| 93 |
+
"{'Tweet text': '@HMRCcustomers No this is my first job',\n",
|
| 94 |
+
" 'ID': 0,\n",
|
| 95 |
+
" 'Label': 2,\n",
|
| 96 |
+
" 'text_label': 'no complaint'}"
|
| 97 |
+
]
|
| 98 |
+
},
|
| 99 |
+
"execution_count": 3,
|
| 100 |
+
"metadata": {},
|
| 101 |
+
"output_type": "execute_result"
|
| 102 |
+
}
|
| 103 |
+
],
|
| 104 |
+
"source": [
|
| 105 |
+
"from datasets import load_dataset\n",
|
| 106 |
+
"\n",
|
| 107 |
+
"dataset = load_dataset(\"ought/raft\", dataset_name)\n",
|
| 108 |
+
"\n",
|
| 109 |
+
"classes = [k.replace(\"_\", \" \") for k in dataset[\"train\"].features[\"Label\"].names]\n",
|
| 110 |
+
"print(classes)\n",
|
| 111 |
+
"dataset = dataset.map(\n",
|
| 112 |
+
" lambda x: {\"text_label\": [classes[label] for label in x[\"Label\"]]},\n",
|
| 113 |
+
" batched=True,\n",
|
| 114 |
+
" num_proc=1,\n",
|
| 115 |
+
")\n",
|
| 116 |
+
"print(dataset)\n",
|
| 117 |
+
"dataset[\"train\"][0]"
|
| 118 |
+
]
|
| 119 |
+
},
|
| 120 |
+
{
|
| 121 |
+
"cell_type": "code",
|
| 122 |
+
"execution_count": 4,
|
| 123 |
+
"id": "fe12d4d3",
|
| 124 |
+
"metadata": {},
|
| 125 |
+
"outputs": [
|
| 126 |
+
{
|
| 127 |
+
"name": "stdout",
|
| 128 |
+
"output_type": "stream",
|
| 129 |
+
"text": [
|
| 130 |
+
"3\n"
|
| 131 |
+
]
|
| 132 |
+
},
|
| 133 |
+
{
|
| 134 |
+
"data": {
|
| 135 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 136 |
+
"model_id": "5a0e3242324842fb941950df38b459fe",
|
| 137 |
+
"version_major": 2,
|
| 138 |
+
"version_minor": 0
|
| 139 |
+
},
|
| 140 |
+
"text/plain": [
|
| 141 |
+
"Running tokenizer on dataset: 0%| | 0/1 [00:00<?, ?ba/s]"
|
| 142 |
+
]
|
| 143 |
+
},
|
| 144 |
+
"metadata": {},
|
| 145 |
+
"output_type": "display_data"
|
| 146 |
+
},
|
| 147 |
+
{
|
| 148 |
+
"data": {
|
| 149 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 150 |
+
"model_id": "133df817b7b9468cabd5353d4d2b675b",
|
| 151 |
+
"version_major": 2,
|
| 152 |
+
"version_minor": 0
|
| 153 |
+
},
|
| 154 |
+
"text/plain": [
|
| 155 |
+
"Running tokenizer on dataset: 0%| | 0/4 [00:00<?, ?ba/s]"
|
| 156 |
+
]
|
| 157 |
+
},
|
| 158 |
+
"metadata": {},
|
| 159 |
+
"output_type": "display_data"
|
| 160 |
+
}
|
| 161 |
+
],
|
| 162 |
+
"source": [
|
| 163 |
+
"# data preprocessing\n",
|
| 164 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)\n",
|
| 165 |
+
"if tokenizer.pad_token_id is None:\n",
|
| 166 |
+
" tokenizer.pad_token_id = tokenizer.eos_token_id\n",
|
| 167 |
+
"target_max_length = max([len(tokenizer(class_label)[\"input_ids\"]) for class_label in classes])\n",
|
| 168 |
+
"print(target_max_length)\n",
|
| 169 |
+
"\n",
|
| 170 |
+
"\n",
|
| 171 |
+
"def preprocess_function(examples):\n",
|
| 172 |
+
" batch_size = len(examples[text_column])\n",
|
| 173 |
+
" inputs = [f\"{text_column} : {x} Label : \" for x in examples[text_column]]\n",
|
| 174 |
+
" targets = [str(x) for x in examples[label_column]]\n",
|
| 175 |
+
" model_inputs = tokenizer(inputs)\n",
|
| 176 |
+
" labels = tokenizer(targets, add_special_tokens=False) # don't add bos token because we concatenate with inputs\n",
|
| 177 |
+
" for i in range(batch_size):\n",
|
| 178 |
+
" sample_input_ids = model_inputs[\"input_ids\"][i]\n",
|
| 179 |
+
" label_input_ids = labels[\"input_ids\"][i] + [tokenizer.eos_token_id]\n",
|
| 180 |
+
" # print(i, sample_input_ids, label_input_ids)\n",
|
| 181 |
+
" model_inputs[\"input_ids\"][i] = sample_input_ids + label_input_ids\n",
|
| 182 |
+
" labels[\"input_ids\"][i] = [-100] * len(sample_input_ids) + label_input_ids\n",
|
| 183 |
+
" model_inputs[\"attention_mask\"][i] = [1] * len(model_inputs[\"input_ids\"][i])\n",
|
| 184 |
+
" # print(model_inputs)\n",
|
| 185 |
+
" for i in range(batch_size):\n",
|
| 186 |
+
" sample_input_ids = model_inputs[\"input_ids\"][i]\n",
|
| 187 |
+
" label_input_ids = labels[\"input_ids\"][i]\n",
|
| 188 |
+
" model_inputs[\"input_ids\"][i] = [tokenizer.pad_token_id] * (\n",
|
| 189 |
+
" max_length - len(sample_input_ids)\n",
|
| 190 |
+
" ) + sample_input_ids\n",
|
| 191 |
+
" model_inputs[\"attention_mask\"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs[\n",
|
| 192 |
+
" \"attention_mask\"\n",
|
| 193 |
+
" ][i]\n",
|
| 194 |
+
" labels[\"input_ids\"][i] = [-100] * (max_length - len(sample_input_ids)) + label_input_ids\n",
|
| 195 |
+
" model_inputs[\"input_ids\"][i] = torch.tensor(model_inputs[\"input_ids\"][i][:max_length])\n",
|
| 196 |
+
" model_inputs[\"attention_mask\"][i] = torch.tensor(model_inputs[\"attention_mask\"][i][:max_length])\n",
|
| 197 |
+
" labels[\"input_ids\"][i] = torch.tensor(labels[\"input_ids\"][i][:max_length])\n",
|
| 198 |
+
" model_inputs[\"labels\"] = labels[\"input_ids\"]\n",
|
| 199 |
+
" return model_inputs\n",
|
| 200 |
+
"\n",
|
| 201 |
+
"\n",
|
| 202 |
+
"processed_datasets = dataset.map(\n",
|
| 203 |
+
" preprocess_function,\n",
|
| 204 |
+
" batched=True,\n",
|
| 205 |
+
" num_proc=1,\n",
|
| 206 |
+
" remove_columns=dataset[\"train\"].column_names,\n",
|
| 207 |
+
" load_from_cache_file=False,\n",
|
| 208 |
+
" desc=\"Running tokenizer on dataset\",\n",
|
| 209 |
+
")\n",
|
| 210 |
+
"\n",
|
| 211 |
+
"train_dataset = processed_datasets[\"train\"]\n",
|
| 212 |
+
"eval_dataset = processed_datasets[\"train\"]\n",
|
| 213 |
+
"\n",
|
| 214 |
+
"\n",
|
| 215 |
+
"train_dataloader = DataLoader(\n",
|
| 216 |
+
" train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True\n",
|
| 217 |
+
")\n",
|
| 218 |
+
"eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)"
|
| 219 |
+
]
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"cell_type": "code",
|
| 223 |
+
"execution_count": null,
|
| 224 |
+
"id": "641b21fe",
|
| 225 |
+
"metadata": {},
|
| 226 |
+
"outputs": [],
|
| 227 |
+
"source": [
|
| 228 |
+
"def test_preprocess_function(examples):\n",
|
| 229 |
+
" batch_size = len(examples[text_column])\n",
|
| 230 |
+
" inputs = [f\"{text_column} : {x} Label : \" for x in examples[text_column]]\n",
|
| 231 |
+
" model_inputs = tokenizer(inputs)\n",
|
| 232 |
+
" # print(model_inputs)\n",
|
| 233 |
+
" for i in range(batch_size):\n",
|
| 234 |
+
" sample_input_ids = model_inputs[\"input_ids\"][i]\n",
|
| 235 |
+
" model_inputs[\"input_ids\"][i] = [tokenizer.pad_token_id] * (\n",
|
| 236 |
+
" max_length - len(sample_input_ids)\n",
|
| 237 |
+
" ) + sample_input_ids\n",
|
| 238 |
+
" model_inputs[\"attention_mask\"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs[\n",
|
| 239 |
+
" \"attention_mask\"\n",
|
| 240 |
+
" ][i]\n",
|
| 241 |
+
" model_inputs[\"input_ids\"][i] = torch.tensor(model_inputs[\"input_ids\"][i][:max_length])\n",
|
| 242 |
+
" model_inputs[\"attention_mask\"][i] = torch.tensor(model_inputs[\"attention_mask\"][i][:max_length])\n",
|
| 243 |
+
" return model_inputs\n",
|
| 244 |
+
"\n",
|
| 245 |
+
"\n",
|
| 246 |
+
"test_dataset = dataset[\"test\"].map(\n",
|
| 247 |
+
" test_preprocess_function,\n",
|
| 248 |
+
" batched=True,\n",
|
| 249 |
+
" num_proc=1,\n",
|
| 250 |
+
" remove_columns=dataset[\"train\"].column_names,\n",
|
| 251 |
+
" load_from_cache_file=False,\n",
|
| 252 |
+
" desc=\"Running tokenizer on dataset\",\n",
|
| 253 |
+
")\n",
|
| 254 |
+
"\n",
|
| 255 |
+
"test_dataloader = DataLoader(test_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)\n",
|
| 256 |
+
"next(iter(test_dataloader))"
|
| 257 |
+
]
|
| 258 |
+
},
|
| 259 |
+
{
|
| 260 |
+
"cell_type": "code",
|
| 261 |
+
"execution_count": null,
|
| 262 |
+
"id": "accc5012",
|
| 263 |
+
"metadata": {},
|
| 264 |
+
"outputs": [],
|
| 265 |
+
"source": [
|
| 266 |
+
"next(iter(train_dataloader))"
|
| 267 |
+
]
|
| 268 |
+
},
|
| 269 |
+
{
|
| 270 |
+
"cell_type": "code",
|
| 271 |
+
"execution_count": 7,
|
| 272 |
+
"id": "218df807",
|
| 273 |
+
"metadata": {},
|
| 274 |
+
"outputs": [
|
| 275 |
+
{
|
| 276 |
+
"data": {
|
| 277 |
+
"text/plain": [
|
| 278 |
+
"425"
|
| 279 |
+
]
|
| 280 |
+
},
|
| 281 |
+
"execution_count": 7,
|
| 282 |
+
"metadata": {},
|
| 283 |
+
"output_type": "execute_result"
|
| 284 |
+
}
|
| 285 |
+
],
|
| 286 |
+
"source": [
|
| 287 |
+
"len(test_dataloader)"
|
| 288 |
+
]
|
| 289 |
+
},
|
| 290 |
+
{
|
| 291 |
+
"cell_type": "code",
|
| 292 |
+
"execution_count": null,
|
| 293 |
+
"id": "47d1fedf",
|
| 294 |
+
"metadata": {},
|
| 295 |
+
"outputs": [],
|
| 296 |
+
"source": [
|
| 297 |
+
"next(iter(test_dataloader))"
|
| 298 |
+
]
|
| 299 |
+
},
|
| 300 |
+
{
|
| 301 |
+
"cell_type": "code",
|
| 302 |
+
"execution_count": 9,
|
| 303 |
+
"id": "a773e092",
|
| 304 |
+
"metadata": {},
|
| 305 |
+
"outputs": [
|
| 306 |
+
{
|
| 307 |
+
"name": "stdout",
|
| 308 |
+
"output_type": "stream",
|
| 309 |
+
"text": [
|
| 310 |
+
"trainable params: 1474560 || all params: 560689152 || trainable%: 0.26299064191632515\n"
|
| 311 |
+
]
|
| 312 |
+
}
|
| 313 |
+
],
|
| 314 |
+
"source": [
|
| 315 |
+
"# creating model\n",
|
| 316 |
+
"model = AutoModelForCausalLM.from_pretrained(model_name_or_path)\n",
|
| 317 |
+
"model = get_peft_model(model, peft_config)\n",
|
| 318 |
+
"model.print_trainable_parameters()"
|
| 319 |
+
]
|
| 320 |
+
},
|
| 321 |
+
{
|
| 322 |
+
"cell_type": "code",
|
| 323 |
+
"execution_count": 10,
|
| 324 |
+
"id": "bd419634",
|
| 325 |
+
"metadata": {},
|
| 326 |
+
"outputs": [
|
| 327 |
+
{
|
| 328 |
+
"name": "stdout",
|
| 329 |
+
"output_type": "stream",
|
| 330 |
+
"text": [
|
| 331 |
+
"trainable params: 1474560 || all params: 560689152 || trainable%: 0.26299064191632515\n"
|
| 332 |
+
]
|
| 333 |
+
}
|
| 334 |
+
],
|
| 335 |
+
"source": [
|
| 336 |
+
"model.print_trainable_parameters()"
|
| 337 |
+
]
|
| 338 |
+
},
|
| 339 |
+
{
|
| 340 |
+
"cell_type": "code",
|
| 341 |
+
"execution_count": null,
|
| 342 |
+
"id": "22822901",
|
| 343 |
+
"metadata": {},
|
| 344 |
+
"outputs": [],
|
| 345 |
+
"source": [
|
| 346 |
+
"model"
|
| 347 |
+
]
|
| 348 |
+
},
|
| 349 |
+
{
|
| 350 |
+
"cell_type": "code",
|
| 351 |
+
"execution_count": 12,
|
| 352 |
+
"id": "023cb942",
|
| 353 |
+
"metadata": {},
|
| 354 |
+
"outputs": [
|
| 355 |
+
{
|
| 356 |
+
"data": {
|
| 357 |
+
"text/plain": [
|
| 358 |
+
"PrefixTuningConfig(peft_type=<PeftType.PREFIX_TUNING: 'PREFIX_TUNING'>, base_model_name_or_path='bigscience/bloomz-560m', task_type=<TaskType.CAUSAL_LM: 'CAUSAL_LM'>, inference_mode=False, num_virtual_tokens=30, token_dim=1024, num_transformer_submodules=1, num_attention_heads=16, num_layers=24, encoder_hidden_size=1024, prefix_projection=False)"
|
| 359 |
+
]
|
| 360 |
+
},
|
| 361 |
+
"execution_count": 12,
|
| 362 |
+
"metadata": {},
|
| 363 |
+
"output_type": "execute_result"
|
| 364 |
+
}
|
| 365 |
+
],
|
| 366 |
+
"source": [
|
| 367 |
+
"model.peft_config"
|
| 368 |
+
]
|
| 369 |
+
},
|
| 370 |
+
{
|
| 371 |
+
"cell_type": "code",
|
| 372 |
+
"execution_count": 13,
|
| 373 |
+
"id": "b2f91568",
|
| 374 |
+
"metadata": {},
|
| 375 |
+
"outputs": [],
|
| 376 |
+
"source": [
|
| 377 |
+
"# model\n",
|
| 378 |
+
"# optimizer and lr scheduler\n",
|
| 379 |
+
"optimizer = torch.optim.AdamW(model.parameters(), lr=lr)\n",
|
| 380 |
+
"lr_scheduler = get_linear_schedule_with_warmup(\n",
|
| 381 |
+
" optimizer=optimizer,\n",
|
| 382 |
+
" num_warmup_steps=0,\n",
|
| 383 |
+
" num_training_steps=(len(train_dataloader) * num_epochs),\n",
|
| 384 |
+
")"
|
| 385 |
+
]
|
| 386 |
+
},
|
| 387 |
+
{
|
| 388 |
+
"cell_type": "code",
|
| 389 |
+
"execution_count": 14,
|
| 390 |
+
"id": "e4fb69fc",
|
| 391 |
+
"metadata": {},
|
| 392 |
+
"outputs": [
|
| 393 |
+
{
|
| 394 |
+
"name": "stderr",
|
| 395 |
+
"output_type": "stream",
|
| 396 |
+
"text": [
|
| 397 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 5.79it/s]\n",
|
| 398 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.51it/s]\n"
|
| 399 |
+
]
|
| 400 |
+
},
|
| 401 |
+
{
|
| 402 |
+
"name": "stdout",
|
| 403 |
+
"output_type": "stream",
|
| 404 |
+
"text": [
|
| 405 |
+
"epoch=0: train_ppl=tensor(1.8325e+09, device='cuda:0') train_epoch_loss=tensor(21.3289, device='cuda:0') eval_ppl=tensor(2713.4180, device='cuda:0') eval_epoch_loss=tensor(7.9060, device='cuda:0')\n"
|
| 406 |
+
]
|
| 407 |
+
},
|
| 408 |
+
{
|
| 409 |
+
"name": "stderr",
|
| 410 |
+
"output_type": "stream",
|
| 411 |
+
"text": [
|
| 412 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.44it/s]\n",
|
| 413 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.53it/s]\n"
|
| 414 |
+
]
|
| 415 |
+
},
|
| 416 |
+
{
|
| 417 |
+
"name": "stdout",
|
| 418 |
+
"output_type": "stream",
|
| 419 |
+
"text": [
|
| 420 |
+
"epoch=1: train_ppl=tensor(341.0600, device='cuda:0') train_epoch_loss=tensor(5.8321, device='cuda:0') eval_ppl=tensor(80.8206, device='cuda:0') eval_epoch_loss=tensor(4.3922, device='cuda:0')\n"
|
| 421 |
+
]
|
| 422 |
+
},
|
| 423 |
+
{
|
| 424 |
+
"name": "stderr",
|
| 425 |
+
"output_type": "stream",
|
| 426 |
+
"text": [
|
| 427 |
+
"100%|██████████████████████████████████████████████████████████████████████████████████��█████████| 7/7 [00:00<00:00, 11.44it/s]\n",
|
| 428 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.55it/s]\n"
|
| 429 |
+
]
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"name": "stdout",
|
| 433 |
+
"output_type": "stream",
|
| 434 |
+
"text": [
|
| 435 |
+
"epoch=2: train_ppl=tensor(59.8778, device='cuda:0') train_epoch_loss=tensor(4.0923, device='cuda:0') eval_ppl=tensor(34.4593, device='cuda:0') eval_epoch_loss=tensor(3.5398, device='cuda:0')\n"
|
| 436 |
+
]
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"name": "stderr",
|
| 440 |
+
"output_type": "stream",
|
| 441 |
+
"text": [
|
| 442 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.45it/s]\n",
|
| 443 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.55it/s]\n"
|
| 444 |
+
]
|
| 445 |
+
},
|
| 446 |
+
{
|
| 447 |
+
"name": "stdout",
|
| 448 |
+
"output_type": "stream",
|
| 449 |
+
"text": [
|
| 450 |
+
"epoch=3: train_ppl=tensor(22.3307, device='cuda:0') train_epoch_loss=tensor(3.1060, device='cuda:0') eval_ppl=tensor(12.5947, device='cuda:0') eval_epoch_loss=tensor(2.5333, device='cuda:0')\n"
|
| 451 |
+
]
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"name": "stderr",
|
| 455 |
+
"output_type": "stream",
|
| 456 |
+
"text": [
|
| 457 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.45it/s]\n",
|
| 458 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.56it/s]\n"
|
| 459 |
+
]
|
| 460 |
+
},
|
| 461 |
+
{
|
| 462 |
+
"name": "stdout",
|
| 463 |
+
"output_type": "stream",
|
| 464 |
+
"text": [
|
| 465 |
+
"epoch=4: train_ppl=tensor(9.1697, device='cuda:0') train_epoch_loss=tensor(2.2159, device='cuda:0') eval_ppl=tensor(4.5289, device='cuda:0') eval_epoch_loss=tensor(1.5105, device='cuda:0')\n"
|
| 466 |
+
]
|
| 467 |
+
},
|
| 468 |
+
{
|
| 469 |
+
"name": "stderr",
|
| 470 |
+
"output_type": "stream",
|
| 471 |
+
"text": [
|
| 472 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.45it/s]\n",
|
| 473 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.52it/s]\n"
|
| 474 |
+
]
|
| 475 |
+
},
|
| 476 |
+
{
|
| 477 |
+
"name": "stdout",
|
| 478 |
+
"output_type": "stream",
|
| 479 |
+
"text": [
|
| 480 |
+
"epoch=5: train_ppl=tensor(3.0172, device='cuda:0') train_epoch_loss=tensor(1.1043, device='cuda:0') eval_ppl=tensor(1.8092, device='cuda:0') eval_epoch_loss=tensor(0.5929, device='cuda:0')\n"
|
| 481 |
+
]
|
| 482 |
+
},
|
| 483 |
+
{
|
| 484 |
+
"name": "stderr",
|
| 485 |
+
"output_type": "stream",
|
| 486 |
+
"text": [
|
| 487 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.44it/s]\n",
|
| 488 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.45it/s]\n"
|
| 489 |
+
]
|
| 490 |
+
},
|
| 491 |
+
{
|
| 492 |
+
"name": "stdout",
|
| 493 |
+
"output_type": "stream",
|
| 494 |
+
"text": [
|
| 495 |
+
"epoch=6: train_ppl=tensor(1.4885, device='cuda:0') train_epoch_loss=tensor(0.3978, device='cuda:0') eval_ppl=tensor(1.4449, device='cuda:0') eval_epoch_loss=tensor(0.3680, device='cuda:0')\n"
|
| 496 |
+
]
|
| 497 |
+
},
|
| 498 |
+
{
|
| 499 |
+
"name": "stderr",
|
| 500 |
+
"output_type": "stream",
|
| 501 |
+
"text": [
|
| 502 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.43it/s]\n",
|
| 503 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.48it/s]\n"
|
| 504 |
+
]
|
| 505 |
+
},
|
| 506 |
+
{
|
| 507 |
+
"name": "stdout",
|
| 508 |
+
"output_type": "stream",
|
| 509 |
+
"text": [
|
| 510 |
+
"epoch=7: train_ppl=tensor(1.2967, device='cuda:0') train_epoch_loss=tensor(0.2598, device='cuda:0') eval_ppl=tensor(1.1587, device='cuda:0') eval_epoch_loss=tensor(0.1473, device='cuda:0')\n"
|
| 511 |
+
]
|
| 512 |
+
},
|
| 513 |
+
{
|
| 514 |
+
"name": "stderr",
|
| 515 |
+
"output_type": "stream",
|
| 516 |
+
"text": [
|
| 517 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.43it/s]\n",
|
| 518 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.47it/s]\n"
|
| 519 |
+
]
|
| 520 |
+
},
|
| 521 |
+
{
|
| 522 |
+
"name": "stdout",
|
| 523 |
+
"output_type": "stream",
|
| 524 |
+
"text": [
|
| 525 |
+
"epoch=8: train_ppl=tensor(1.1305, device='cuda:0') train_epoch_loss=tensor(0.1227, device='cuda:0') eval_ppl=tensor(1.0874, device='cuda:0') eval_epoch_loss=tensor(0.0838, device='cuda:0')\n"
|
| 526 |
+
]
|
| 527 |
+
},
|
| 528 |
+
{
|
| 529 |
+
"name": "stderr",
|
| 530 |
+
"output_type": "stream",
|
| 531 |
+
"text": [
|
| 532 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.45it/s]\n",
|
| 533 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.46it/s]\n"
|
| 534 |
+
]
|
| 535 |
+
},
|
| 536 |
+
{
|
| 537 |
+
"name": "stdout",
|
| 538 |
+
"output_type": "stream",
|
| 539 |
+
"text": [
|
| 540 |
+
"epoch=9: train_ppl=tensor(1.1608, device='cuda:0') train_epoch_loss=tensor(0.1491, device='cuda:0') eval_ppl=tensor(1.1461, device='cuda:0') eval_epoch_loss=tensor(0.1364, device='cuda:0')\n"
|
| 541 |
+
]
|
| 542 |
+
},
|
| 543 |
+
{
|
| 544 |
+
"name": "stderr",
|
| 545 |
+
"output_type": "stream",
|
| 546 |
+
"text": [
|
| 547 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.45it/s]\n",
|
| 548 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.45it/s]\n"
|
| 549 |
+
]
|
| 550 |
+
},
|
| 551 |
+
{
|
| 552 |
+
"name": "stdout",
|
| 553 |
+
"output_type": "stream",
|
| 554 |
+
"text": [
|
| 555 |
+
"epoch=10: train_ppl=tensor(1.3172, device='cuda:0') train_epoch_loss=tensor(0.2755, device='cuda:0') eval_ppl=tensor(1.1320, device='cuda:0') eval_epoch_loss=tensor(0.1240, device='cuda:0')\n"
|
| 556 |
+
]
|
| 557 |
+
},
|
| 558 |
+
{
|
| 559 |
+
"name": "stderr",
|
| 560 |
+
"output_type": "stream",
|
| 561 |
+
"text": [
|
| 562 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.44it/s]\n",
|
| 563 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.46it/s]\n"
|
| 564 |
+
]
|
| 565 |
+
},
|
| 566 |
+
{
|
| 567 |
+
"name": "stdout",
|
| 568 |
+
"output_type": "stream",
|
| 569 |
+
"text": [
|
| 570 |
+
"epoch=11: train_ppl=tensor(1.1437, device='cuda:0') train_epoch_loss=tensor(0.1343, device='cuda:0') eval_ppl=tensor(1.0676, device='cuda:0') eval_epoch_loss=tensor(0.0654, device='cuda:0')\n"
|
| 571 |
+
]
|
| 572 |
+
},
|
| 573 |
+
{
|
| 574 |
+
"name": "stderr",
|
| 575 |
+
"output_type": "stream",
|
| 576 |
+
"text": [
|
| 577 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.43it/s]\n",
|
| 578 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.43it/s]\n"
|
| 579 |
+
]
|
| 580 |
+
},
|
| 581 |
+
{
|
| 582 |
+
"name": "stdout",
|
| 583 |
+
"output_type": "stream",
|
| 584 |
+
"text": [
|
| 585 |
+
"epoch=12: train_ppl=tensor(1.0651, device='cuda:0') train_epoch_loss=tensor(0.0630, device='cuda:0') eval_ppl=tensor(1.0735, device='cuda:0') eval_epoch_loss=tensor(0.0710, device='cuda:0')\n"
|
| 586 |
+
]
|
| 587 |
+
},
|
| 588 |
+
{
|
| 589 |
+
"name": "stderr",
|
| 590 |
+
"output_type": "stream",
|
| 591 |
+
"text": [
|
| 592 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.46it/s]\n",
|
| 593 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.47it/s]\n"
|
| 594 |
+
]
|
| 595 |
+
},
|
| 596 |
+
{
|
| 597 |
+
"name": "stdout",
|
| 598 |
+
"output_type": "stream",
|
| 599 |
+
"text": [
|
| 600 |
+
"epoch=13: train_ppl=tensor(1.0607, device='cuda:0') train_epoch_loss=tensor(0.0589, device='cuda:0') eval_ppl=tensor(1.0399, device='cuda:0') eval_epoch_loss=tensor(0.0391, device='cuda:0')\n"
|
| 601 |
+
]
|
| 602 |
+
},
|
| 603 |
+
{
|
| 604 |
+
"name": "stderr",
|
| 605 |
+
"output_type": "stream",
|
| 606 |
+
"text": [
|
| 607 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.43it/s]\n",
|
| 608 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.44it/s]\n"
|
| 609 |
+
]
|
| 610 |
+
},
|
| 611 |
+
{
|
| 612 |
+
"name": "stdout",
|
| 613 |
+
"output_type": "stream",
|
| 614 |
+
"text": [
|
| 615 |
+
"epoch=14: train_ppl=tensor(1.0351, device='cuda:0') train_epoch_loss=tensor(0.0345, device='cuda:0') eval_ppl=tensor(1.0260, device='cuda:0') eval_epoch_loss=tensor(0.0257, device='cuda:0')\n"
|
| 616 |
+
]
|
| 617 |
+
},
|
| 618 |
+
{
|
| 619 |
+
"name": "stderr",
|
| 620 |
+
"output_type": "stream",
|
| 621 |
+
"text": [
|
| 622 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.44it/s]\n",
|
| 623 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.43it/s]\n"
|
| 624 |
+
]
|
| 625 |
+
},
|
| 626 |
+
{
|
| 627 |
+
"name": "stdout",
|
| 628 |
+
"output_type": "stream",
|
| 629 |
+
"text": [
|
| 630 |
+
"epoch=15: train_ppl=tensor(1.0217, device='cuda:0') train_epoch_loss=tensor(0.0215, device='cuda:0') eval_ppl=tensor(1.0168, device='cuda:0') eval_epoch_loss=tensor(0.0167, device='cuda:0')\n"
|
| 631 |
+
]
|
| 632 |
+
},
|
| 633 |
+
{
|
| 634 |
+
"name": "stderr",
|
| 635 |
+
"output_type": "stream",
|
| 636 |
+
"text": [
|
| 637 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.43it/s]\n",
|
| 638 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.28it/s]\n"
|
| 639 |
+
]
|
| 640 |
+
},
|
| 641 |
+
{
|
| 642 |
+
"name": "stdout",
|
| 643 |
+
"output_type": "stream",
|
| 644 |
+
"text": [
|
| 645 |
+
"epoch=16: train_ppl=tensor(1.0152, device='cuda:0') train_epoch_loss=tensor(0.0151, device='cuda:0') eval_ppl=tensor(1.0117, device='cuda:0') eval_epoch_loss=tensor(0.0116, device='cuda:0')\n"
|
| 646 |
+
]
|
| 647 |
+
},
|
| 648 |
+
{
|
| 649 |
+
"name": "stderr",
|
| 650 |
+
"output_type": "stream",
|
| 651 |
+
"text": [
|
| 652 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.43it/s]\n",
|
| 653 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.41it/s]\n"
|
| 654 |
+
]
|
| 655 |
+
},
|
| 656 |
+
{
|
| 657 |
+
"name": "stdout",
|
| 658 |
+
"output_type": "stream",
|
| 659 |
+
"text": [
|
| 660 |
+
"epoch=17: train_ppl=tensor(1.0102, device='cuda:0') train_epoch_loss=tensor(0.0101, device='cuda:0') eval_ppl=tensor(1.0088, device='cuda:0') eval_epoch_loss=tensor(0.0088, device='cuda:0')\n"
|
| 661 |
+
]
|
| 662 |
+
},
|
| 663 |
+
{
|
| 664 |
+
"name": "stderr",
|
| 665 |
+
"output_type": "stream",
|
| 666 |
+
"text": [
|
| 667 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.29it/s]\n",
|
| 668 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.25it/s]\n"
|
| 669 |
+
]
|
| 670 |
+
},
|
| 671 |
+
{
|
| 672 |
+
"name": "stdout",
|
| 673 |
+
"output_type": "stream",
|
| 674 |
+
"text": [
|
| 675 |
+
"epoch=18: train_ppl=tensor(1.0083, device='cuda:0') train_epoch_loss=tensor(0.0083, device='cuda:0') eval_ppl=tensor(1.0073, device='cuda:0') eval_epoch_loss=tensor(0.0073, device='cuda:0')\n"
|
| 676 |
+
]
|
| 677 |
+
},
|
| 678 |
+
{
|
| 679 |
+
"name": "stderr",
|
| 680 |
+
"output_type": "stream",
|
| 681 |
+
"text": [
|
| 682 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.43it/s]\n",
|
| 683 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.46it/s]\n"
|
| 684 |
+
]
|
| 685 |
+
},
|
| 686 |
+
{
|
| 687 |
+
"name": "stdout",
|
| 688 |
+
"output_type": "stream",
|
| 689 |
+
"text": [
|
| 690 |
+
"epoch=19: train_ppl=tensor(1.0070, device='cuda:0') train_epoch_loss=tensor(0.0070, device='cuda:0') eval_ppl=tensor(1.0064, device='cuda:0') eval_epoch_loss=tensor(0.0063, device='cuda:0')\n"
|
| 691 |
+
]
|
| 692 |
+
},
|
| 693 |
+
{
|
| 694 |
+
"name": "stderr",
|
| 695 |
+
"output_type": "stream",
|
| 696 |
+
"text": [
|
| 697 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.43it/s]\n",
|
| 698 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.51it/s]\n"
|
| 699 |
+
]
|
| 700 |
+
},
|
| 701 |
+
{
|
| 702 |
+
"name": "stdout",
|
| 703 |
+
"output_type": "stream",
|
| 704 |
+
"text": [
|
| 705 |
+
"epoch=20: train_ppl=tensor(1.0059, device='cuda:0') train_epoch_loss=tensor(0.0059, device='cuda:0') eval_ppl=tensor(1.0057, device='cuda:0') eval_epoch_loss=tensor(0.0057, device='cuda:0')\n"
|
| 706 |
+
]
|
| 707 |
+
},
|
| 708 |
+
{
|
| 709 |
+
"name": "stderr",
|
| 710 |
+
"output_type": "stream",
|
| 711 |
+
"text": [
|
| 712 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.43it/s]\n",
|
| 713 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.47it/s]\n"
|
| 714 |
+
]
|
| 715 |
+
},
|
| 716 |
+
{
|
| 717 |
+
"name": "stdout",
|
| 718 |
+
"output_type": "stream",
|
| 719 |
+
"text": [
|
| 720 |
+
"epoch=21: train_ppl=tensor(1.0056, device='cuda:0') train_epoch_loss=tensor(0.0056, device='cuda:0') eval_ppl=tensor(1.0052, device='cuda:0') eval_epoch_loss=tensor(0.0052, device='cuda:0')\n"
|
| 721 |
+
]
|
| 722 |
+
},
|
| 723 |
+
{
|
| 724 |
+
"name": "stderr",
|
| 725 |
+
"output_type": "stream",
|
| 726 |
+
"text": [
|
| 727 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.41it/s]\n",
|
| 728 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.33it/s]\n"
|
| 729 |
+
]
|
| 730 |
+
},
|
| 731 |
+
{
|
| 732 |
+
"name": "stdout",
|
| 733 |
+
"output_type": "stream",
|
| 734 |
+
"text": [
|
| 735 |
+
"epoch=22: train_ppl=tensor(1.0050, device='cuda:0') train_epoch_loss=tensor(0.0050, device='cuda:0') eval_ppl=tensor(1.0049, device='cuda:0') eval_epoch_loss=tensor(0.0049, device='cuda:0')\n"
|
| 736 |
+
]
|
| 737 |
+
},
|
| 738 |
+
{
|
| 739 |
+
"name": "stderr",
|
| 740 |
+
"output_type": "stream",
|
| 741 |
+
"text": [
|
| 742 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.39it/s]\n",
|
| 743 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.44it/s]\n"
|
| 744 |
+
]
|
| 745 |
+
},
|
| 746 |
+
{
|
| 747 |
+
"name": "stdout",
|
| 748 |
+
"output_type": "stream",
|
| 749 |
+
"text": [
|
| 750 |
+
"epoch=23: train_ppl=tensor(1.0049, device='cuda:0') train_epoch_loss=tensor(0.0049, device='cuda:0') eval_ppl=tensor(1.0045, device='cuda:0') eval_epoch_loss=tensor(0.0045, device='cuda:0')\n"
|
| 751 |
+
]
|
| 752 |
+
},
|
| 753 |
+
{
|
| 754 |
+
"name": "stderr",
|
| 755 |
+
"output_type": "stream",
|
| 756 |
+
"text": [
|
| 757 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.42it/s]\n",
|
| 758 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.49it/s]\n"
|
| 759 |
+
]
|
| 760 |
+
},
|
| 761 |
+
{
|
| 762 |
+
"name": "stdout",
|
| 763 |
+
"output_type": "stream",
|
| 764 |
+
"text": [
|
| 765 |
+
"epoch=24: train_ppl=tensor(1.0043, device='cuda:0') train_epoch_loss=tensor(0.0043, device='cuda:0') eval_ppl=tensor(1.0043, device='cuda:0') eval_epoch_loss=tensor(0.0043, device='cuda:0')\n"
|
| 766 |
+
]
|
| 767 |
+
},
|
| 768 |
+
{
|
| 769 |
+
"name": "stderr",
|
| 770 |
+
"output_type": "stream",
|
| 771 |
+
"text": [
|
| 772 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.46it/s]\n",
|
| 773 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.47it/s]\n"
|
| 774 |
+
]
|
| 775 |
+
},
|
| 776 |
+
{
|
| 777 |
+
"name": "stdout",
|
| 778 |
+
"output_type": "stream",
|
| 779 |
+
"text": [
|
| 780 |
+
"epoch=25: train_ppl=tensor(1.0042, device='cuda:0') train_epoch_loss=tensor(0.0042, device='cuda:0') eval_ppl=tensor(1.0040, device='cuda:0') eval_epoch_loss=tensor(0.0040, device='cuda:0')\n"
|
| 781 |
+
]
|
| 782 |
+
},
|
| 783 |
+
{
|
| 784 |
+
"name": "stderr",
|
| 785 |
+
"output_type": "stream",
|
| 786 |
+
"text": [
|
| 787 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.44it/s]\n",
|
| 788 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.52it/s]\n"
|
| 789 |
+
]
|
| 790 |
+
},
|
| 791 |
+
{
|
| 792 |
+
"name": "stdout",
|
| 793 |
+
"output_type": "stream",
|
| 794 |
+
"text": [
|
| 795 |
+
"epoch=26: train_ppl=tensor(1.0039, device='cuda:0') train_epoch_loss=tensor(0.0039, device='cuda:0') eval_ppl=tensor(1.0039, device='cuda:0') eval_epoch_loss=tensor(0.0039, device='cuda:0')\n"
|
| 796 |
+
]
|
| 797 |
+
},
|
| 798 |
+
{
|
| 799 |
+
"name": "stderr",
|
| 800 |
+
"output_type": "stream",
|
| 801 |
+
"text": [
|
| 802 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.44it/s]\n",
|
| 803 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.48it/s]\n"
|
| 804 |
+
]
|
| 805 |
+
},
|
| 806 |
+
{
|
| 807 |
+
"name": "stdout",
|
| 808 |
+
"output_type": "stream",
|
| 809 |
+
"text": [
|
| 810 |
+
"epoch=27: train_ppl=tensor(1.0038, device='cuda:0') train_epoch_loss=tensor(0.0038, device='cuda:0') eval_ppl=tensor(1.0037, device='cuda:0') eval_epoch_loss=tensor(0.0037, device='cuda:0')\n"
|
| 811 |
+
]
|
| 812 |
+
},
|
| 813 |
+
{
|
| 814 |
+
"name": "stderr",
|
| 815 |
+
"output_type": "stream",
|
| 816 |
+
"text": [
|
| 817 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.46it/s]\n",
|
| 818 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.54it/s]\n"
|
| 819 |
+
]
|
| 820 |
+
},
|
| 821 |
+
{
|
| 822 |
+
"name": "stdout",
|
| 823 |
+
"output_type": "stream",
|
| 824 |
+
"text": [
|
| 825 |
+
"epoch=28: train_ppl=tensor(1.0036, device='cuda:0') train_epoch_loss=tensor(0.0036, device='cuda:0') eval_ppl=tensor(1.0035, device='cuda:0') eval_epoch_loss=tensor(0.0035, device='cuda:0')\n"
|
| 826 |
+
]
|
| 827 |
+
},
|
| 828 |
+
{
|
| 829 |
+
"name": "stderr",
|
| 830 |
+
"output_type": "stream",
|
| 831 |
+
"text": [
|
| 832 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.45it/s]\n",
|
| 833 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.53it/s]\n"
|
| 834 |
+
]
|
| 835 |
+
},
|
| 836 |
+
{
|
| 837 |
+
"name": "stdout",
|
| 838 |
+
"output_type": "stream",
|
| 839 |
+
"text": [
|
| 840 |
+
"epoch=29: train_ppl=tensor(1.0034, device='cuda:0') train_epoch_loss=tensor(0.0034, device='cuda:0') eval_ppl=tensor(1.0034, device='cuda:0') eval_epoch_loss=tensor(0.0034, device='cuda:0')\n"
|
| 841 |
+
]
|
| 842 |
+
},
|
| 843 |
+
{
|
| 844 |
+
"name": "stderr",
|
| 845 |
+
"output_type": "stream",
|
| 846 |
+
"text": [
|
| 847 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.43it/s]\n",
|
| 848 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.47it/s]\n"
|
| 849 |
+
]
|
| 850 |
+
},
|
| 851 |
+
{
|
| 852 |
+
"name": "stdout",
|
| 853 |
+
"output_type": "stream",
|
| 854 |
+
"text": [
|
| 855 |
+
"epoch=30: train_ppl=tensor(1.0034, device='cuda:0') train_epoch_loss=tensor(0.0034, device='cuda:0') eval_ppl=tensor(1.0033, device='cuda:0') eval_epoch_loss=tensor(0.0033, device='cuda:0')\n"
|
| 856 |
+
]
|
| 857 |
+
},
|
| 858 |
+
{
|
| 859 |
+
"name": "stderr",
|
| 860 |
+
"output_type": "stream",
|
| 861 |
+
"text": [
|
| 862 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.43it/s]\n",
|
| 863 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.47it/s]\n"
|
| 864 |
+
]
|
| 865 |
+
},
|
| 866 |
+
{
|
| 867 |
+
"name": "stdout",
|
| 868 |
+
"output_type": "stream",
|
| 869 |
+
"text": [
|
| 870 |
+
"epoch=31: train_ppl=tensor(1.0033, device='cuda:0') train_epoch_loss=tensor(0.0033, device='cuda:0') eval_ppl=tensor(1.0032, device='cuda:0') eval_epoch_loss=tensor(0.0032, device='cuda:0')\n"
|
| 871 |
+
]
|
| 872 |
+
},
|
| 873 |
+
{
|
| 874 |
+
"name": "stderr",
|
| 875 |
+
"output_type": "stream",
|
| 876 |
+
"text": [
|
| 877 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.46it/s]\n",
|
| 878 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.51it/s]\n"
|
| 879 |
+
]
|
| 880 |
+
},
|
| 881 |
+
{
|
| 882 |
+
"name": "stdout",
|
| 883 |
+
"output_type": "stream",
|
| 884 |
+
"text": [
|
| 885 |
+
"epoch=32: train_ppl=tensor(1.0031, device='cuda:0') train_epoch_loss=tensor(0.0031, device='cuda:0') eval_ppl=tensor(1.0031, device='cuda:0') eval_epoch_loss=tensor(0.0031, device='cuda:0')\n"
|
| 886 |
+
]
|
| 887 |
+
},
|
| 888 |
+
{
|
| 889 |
+
"name": "stderr",
|
| 890 |
+
"output_type": "stream",
|
| 891 |
+
"text": [
|
| 892 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.44it/s]\n",
|
| 893 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.43it/s]\n"
|
| 894 |
+
]
|
| 895 |
+
},
|
| 896 |
+
{
|
| 897 |
+
"name": "stdout",
|
| 898 |
+
"output_type": "stream",
|
| 899 |
+
"text": [
|
| 900 |
+
"epoch=33: train_ppl=tensor(1.0030, device='cuda:0') train_epoch_loss=tensor(0.0030, device='cuda:0') eval_ppl=tensor(1.0030, device='cuda:0') eval_epoch_loss=tensor(0.0030, device='cuda:0')\n"
|
| 901 |
+
]
|
| 902 |
+
},
|
| 903 |
+
{
|
| 904 |
+
"name": "stderr",
|
| 905 |
+
"output_type": "stream",
|
| 906 |
+
"text": [
|
| 907 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.45it/s]\n",
|
| 908 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.46it/s]\n"
|
| 909 |
+
]
|
| 910 |
+
},
|
| 911 |
+
{
|
| 912 |
+
"name": "stdout",
|
| 913 |
+
"output_type": "stream",
|
| 914 |
+
"text": [
|
| 915 |
+
"epoch=34: train_ppl=tensor(1.0029, device='cuda:0') train_epoch_loss=tensor(0.0029, device='cuda:0') eval_ppl=tensor(1.0029, device='cuda:0') eval_epoch_loss=tensor(0.0029, device='cuda:0')\n"
|
| 916 |
+
]
|
| 917 |
+
},
|
| 918 |
+
{
|
| 919 |
+
"name": "stderr",
|
| 920 |
+
"output_type": "stream",
|
| 921 |
+
"text": [
|
| 922 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.45it/s]\n",
|
| 923 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.47it/s]\n"
|
| 924 |
+
]
|
| 925 |
+
},
|
| 926 |
+
{
|
| 927 |
+
"name": "stdout",
|
| 928 |
+
"output_type": "stream",
|
| 929 |
+
"text": [
|
| 930 |
+
"epoch=35: train_ppl=tensor(1.0028, device='cuda:0') train_epoch_loss=tensor(0.0028, device='cuda:0') eval_ppl=tensor(1.0029, device='cuda:0') eval_epoch_loss=tensor(0.0029, device='cuda:0')\n"
|
| 931 |
+
]
|
| 932 |
+
},
|
| 933 |
+
{
|
| 934 |
+
"name": "stderr",
|
| 935 |
+
"output_type": "stream",
|
| 936 |
+
"text": [
|
| 937 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.45it/s]\n",
|
| 938 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.45it/s]\n"
|
| 939 |
+
]
|
| 940 |
+
},
|
| 941 |
+
{
|
| 942 |
+
"name": "stdout",
|
| 943 |
+
"output_type": "stream",
|
| 944 |
+
"text": [
|
| 945 |
+
"epoch=36: train_ppl=tensor(1.0027, device='cuda:0') train_epoch_loss=tensor(0.0027, device='cuda:0') eval_ppl=tensor(1.0028, device='cuda:0') eval_epoch_loss=tensor(0.0028, device='cuda:0')\n"
|
| 946 |
+
]
|
| 947 |
+
},
|
| 948 |
+
{
|
| 949 |
+
"name": "stderr",
|
| 950 |
+
"output_type": "stream",
|
| 951 |
+
"text": [
|
| 952 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.45it/s]\n",
|
| 953 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.47it/s]\n"
|
| 954 |
+
]
|
| 955 |
+
},
|
| 956 |
+
{
|
| 957 |
+
"name": "stdout",
|
| 958 |
+
"output_type": "stream",
|
| 959 |
+
"text": [
|
| 960 |
+
"epoch=37: train_ppl=tensor(1.0027, device='cuda:0') train_epoch_loss=tensor(0.0027, device='cuda:0') eval_ppl=tensor(1.0027, device='cuda:0') eval_epoch_loss=tensor(0.0027, device='cuda:0')\n"
|
| 961 |
+
]
|
| 962 |
+
},
|
| 963 |
+
{
|
| 964 |
+
"name": "stderr",
|
| 965 |
+
"output_type": "stream",
|
| 966 |
+
"text": [
|
| 967 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.45it/s]\n",
|
| 968 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.46it/s]\n"
|
| 969 |
+
]
|
| 970 |
+
},
|
| 971 |
+
{
|
| 972 |
+
"name": "stdout",
|
| 973 |
+
"output_type": "stream",
|
| 974 |
+
"text": [
|
| 975 |
+
"epoch=38: train_ppl=tensor(1.0027, device='cuda:0') train_epoch_loss=tensor(0.0027, device='cuda:0') eval_ppl=tensor(1.0027, device='cuda:0') eval_epoch_loss=tensor(0.0027, device='cuda:0')\n"
|
| 976 |
+
]
|
| 977 |
+
},
|
| 978 |
+
{
|
| 979 |
+
"name": "stderr",
|
| 980 |
+
"output_type": "stream",
|
| 981 |
+
"text": [
|
| 982 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.44it/s]\n",
|
| 983 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.43it/s]\n"
|
| 984 |
+
]
|
| 985 |
+
},
|
| 986 |
+
{
|
| 987 |
+
"name": "stdout",
|
| 988 |
+
"output_type": "stream",
|
| 989 |
+
"text": [
|
| 990 |
+
"epoch=39: train_ppl=tensor(1.0025, device='cuda:0') train_epoch_loss=tensor(0.0025, device='cuda:0') eval_ppl=tensor(1.0026, device='cuda:0') eval_epoch_loss=tensor(0.0026, device='cuda:0')\n"
|
| 991 |
+
]
|
| 992 |
+
},
|
| 993 |
+
{
|
| 994 |
+
"name": "stderr",
|
| 995 |
+
"output_type": "stream",
|
| 996 |
+
"text": [
|
| 997 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.44it/s]\n",
|
| 998 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.47it/s]\n"
|
| 999 |
+
]
|
| 1000 |
+
},
|
| 1001 |
+
{
|
| 1002 |
+
"name": "stdout",
|
| 1003 |
+
"output_type": "stream",
|
| 1004 |
+
"text": [
|
| 1005 |
+
"epoch=40: train_ppl=tensor(1.0026, device='cuda:0') train_epoch_loss=tensor(0.0026, device='cuda:0') eval_ppl=tensor(1.0026, device='cuda:0') eval_epoch_loss=tensor(0.0026, device='cuda:0')\n"
|
| 1006 |
+
]
|
| 1007 |
+
},
|
| 1008 |
+
{
|
| 1009 |
+
"name": "stderr",
|
| 1010 |
+
"output_type": "stream",
|
| 1011 |
+
"text": [
|
| 1012 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.44it/s]\n",
|
| 1013 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.33it/s]\n"
|
| 1014 |
+
]
|
| 1015 |
+
},
|
| 1016 |
+
{
|
| 1017 |
+
"name": "stdout",
|
| 1018 |
+
"output_type": "stream",
|
| 1019 |
+
"text": [
|
| 1020 |
+
"epoch=41: train_ppl=tensor(1.0025, device='cuda:0') train_epoch_loss=tensor(0.0025, device='cuda:0') eval_ppl=tensor(1.0025, device='cuda:0') eval_epoch_loss=tensor(0.0025, device='cuda:0')\n"
|
| 1021 |
+
]
|
| 1022 |
+
},
|
| 1023 |
+
{
|
| 1024 |
+
"name": "stderr",
|
| 1025 |
+
"output_type": "stream",
|
| 1026 |
+
"text": [
|
| 1027 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.42it/s]\n",
|
| 1028 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.49it/s]\n"
|
| 1029 |
+
]
|
| 1030 |
+
},
|
| 1031 |
+
{
|
| 1032 |
+
"name": "stdout",
|
| 1033 |
+
"output_type": "stream",
|
| 1034 |
+
"text": [
|
| 1035 |
+
"epoch=42: train_ppl=tensor(1.0024, device='cuda:0') train_epoch_loss=tensor(0.0024, device='cuda:0') eval_ppl=tensor(1.0025, device='cuda:0') eval_epoch_loss=tensor(0.0025, device='cuda:0')\n"
|
| 1036 |
+
]
|
| 1037 |
+
},
|
| 1038 |
+
{
|
| 1039 |
+
"name": "stderr",
|
| 1040 |
+
"output_type": "stream",
|
| 1041 |
+
"text": [
|
| 1042 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.44it/s]\n",
|
| 1043 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.47it/s]\n"
|
| 1044 |
+
]
|
| 1045 |
+
},
|
| 1046 |
+
{
|
| 1047 |
+
"name": "stdout",
|
| 1048 |
+
"output_type": "stream",
|
| 1049 |
+
"text": [
|
| 1050 |
+
"epoch=43: train_ppl=tensor(1.0024, device='cuda:0') train_epoch_loss=tensor(0.0024, device='cuda:0') eval_ppl=tensor(1.0025, device='cuda:0') eval_epoch_loss=tensor(0.0025, device='cuda:0')\n"
|
| 1051 |
+
]
|
| 1052 |
+
},
|
| 1053 |
+
{
|
| 1054 |
+
"name": "stderr",
|
| 1055 |
+
"output_type": "stream",
|
| 1056 |
+
"text": [
|
| 1057 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.44it/s]\n",
|
| 1058 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.43it/s]\n"
|
| 1059 |
+
]
|
| 1060 |
+
},
|
| 1061 |
+
{
|
| 1062 |
+
"name": "stdout",
|
| 1063 |
+
"output_type": "stream",
|
| 1064 |
+
"text": [
|
| 1065 |
+
"epoch=44: train_ppl=tensor(1.0025, device='cuda:0') train_epoch_loss=tensor(0.0024, device='cuda:0') eval_ppl=tensor(1.0024, device='cuda:0') eval_epoch_loss=tensor(0.0024, device='cuda:0')\n"
|
| 1066 |
+
]
|
| 1067 |
+
},
|
| 1068 |
+
{
|
| 1069 |
+
"name": "stderr",
|
| 1070 |
+
"output_type": "stream",
|
| 1071 |
+
"text": [
|
| 1072 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.43it/s]\n",
|
| 1073 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.50it/s]\n"
|
| 1074 |
+
]
|
| 1075 |
+
},
|
| 1076 |
+
{
|
| 1077 |
+
"name": "stdout",
|
| 1078 |
+
"output_type": "stream",
|
| 1079 |
+
"text": [
|
| 1080 |
+
"epoch=45: train_ppl=tensor(1.0024, device='cuda:0') train_epoch_loss=tensor(0.0024, device='cuda:0') eval_ppl=tensor(1.0024, device='cuda:0') eval_epoch_loss=tensor(0.0024, device='cuda:0')\n"
|
| 1081 |
+
]
|
| 1082 |
+
},
|
| 1083 |
+
{
|
| 1084 |
+
"name": "stderr",
|
| 1085 |
+
"output_type": "stream",
|
| 1086 |
+
"text": [
|
| 1087 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.43it/s]\n",
|
| 1088 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.49it/s]\n"
|
| 1089 |
+
]
|
| 1090 |
+
},
|
| 1091 |
+
{
|
| 1092 |
+
"name": "stdout",
|
| 1093 |
+
"output_type": "stream",
|
| 1094 |
+
"text": [
|
| 1095 |
+
"epoch=46: train_ppl=tensor(1.0024, device='cuda:0') train_epoch_loss=tensor(0.0024, device='cuda:0') eval_ppl=tensor(1.0024, device='cuda:0') eval_epoch_loss=tensor(0.0024, device='cuda:0')\n"
|
| 1096 |
+
]
|
| 1097 |
+
},
|
| 1098 |
+
{
|
| 1099 |
+
"name": "stderr",
|
| 1100 |
+
"output_type": "stream",
|
| 1101 |
+
"text": [
|
| 1102 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.42it/s]\n",
|
| 1103 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.39it/s]\n"
|
| 1104 |
+
]
|
| 1105 |
+
},
|
| 1106 |
+
{
|
| 1107 |
+
"name": "stdout",
|
| 1108 |
+
"output_type": "stream",
|
| 1109 |
+
"text": [
|
| 1110 |
+
"epoch=47: train_ppl=tensor(1.0023, device='cuda:0') train_epoch_loss=tensor(0.0023, device='cuda:0') eval_ppl=tensor(1.0024, device='cuda:0') eval_epoch_loss=tensor(0.0024, device='cuda:0')\n"
|
| 1111 |
+
]
|
| 1112 |
+
},
|
| 1113 |
+
{
|
| 1114 |
+
"name": "stderr",
|
| 1115 |
+
"output_type": "stream",
|
| 1116 |
+
"text": [
|
| 1117 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.40it/s]\n",
|
| 1118 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 22.40it/s]\n"
|
| 1119 |
+
]
|
| 1120 |
+
},
|
| 1121 |
+
{
|
| 1122 |
+
"name": "stdout",
|
| 1123 |
+
"output_type": "stream",
|
| 1124 |
+
"text": [
|
| 1125 |
+
"epoch=48: train_ppl=tensor(1.0023, device='cuda:0') train_epoch_loss=tensor(0.0023, device='cuda:0') eval_ppl=tensor(1.0024, device='cuda:0') eval_epoch_loss=tensor(0.0024, device='cuda:0')\n"
|
| 1126 |
+
]
|
| 1127 |
+
},
|
| 1128 |
+
{
|
| 1129 |
+
"name": "stderr",
|
| 1130 |
+
"output_type": "stream",
|
| 1131 |
+
"text": [
|
| 1132 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 11.41it/s]\n",
|
| 1133 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.87it/s]"
|
| 1134 |
+
]
|
| 1135 |
+
},
|
| 1136 |
+
{
|
| 1137 |
+
"name": "stdout",
|
| 1138 |
+
"output_type": "stream",
|
| 1139 |
+
"text": [
|
| 1140 |
+
"epoch=49: train_ppl=tensor(1.0023, device='cuda:0') train_epoch_loss=tensor(0.0023, device='cuda:0') eval_ppl=tensor(1.0024, device='cuda:0') eval_epoch_loss=tensor(0.0024, device='cuda:0')\n"
|
| 1141 |
+
]
|
| 1142 |
+
},
|
| 1143 |
+
{
|
| 1144 |
+
"name": "stderr",
|
| 1145 |
+
"output_type": "stream",
|
| 1146 |
+
"text": [
|
| 1147 |
+
"\n"
|
| 1148 |
+
]
|
| 1149 |
+
}
|
| 1150 |
+
],
|
| 1151 |
+
"source": [
|
| 1152 |
+
"# training and evaluation\n",
|
| 1153 |
+
"model = model.to(device)\n",
|
| 1154 |
+
"\n",
|
| 1155 |
+
"for epoch in range(num_epochs):\n",
|
| 1156 |
+
" model.train()\n",
|
| 1157 |
+
" total_loss = 0\n",
|
| 1158 |
+
" for step, batch in enumerate(tqdm(train_dataloader)):\n",
|
| 1159 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
| 1160 |
+
" # print(batch)\n",
|
| 1161 |
+
" # print(batch[\"input_ids\"].shape)\n",
|
| 1162 |
+
" outputs = model(**batch)\n",
|
| 1163 |
+
" loss = outputs.loss\n",
|
| 1164 |
+
" total_loss += loss.detach().float()\n",
|
| 1165 |
+
" loss.backward()\n",
|
| 1166 |
+
" optimizer.step()\n",
|
| 1167 |
+
" lr_scheduler.step()\n",
|
| 1168 |
+
" optimizer.zero_grad()\n",
|
| 1169 |
+
"\n",
|
| 1170 |
+
" model.eval()\n",
|
| 1171 |
+
" eval_loss = 0\n",
|
| 1172 |
+
" eval_preds = []\n",
|
| 1173 |
+
" for step, batch in enumerate(tqdm(eval_dataloader)):\n",
|
| 1174 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
| 1175 |
+
" with torch.no_grad():\n",
|
| 1176 |
+
" outputs = model(**batch)\n",
|
| 1177 |
+
" loss = outputs.loss\n",
|
| 1178 |
+
" eval_loss += loss.detach().float()\n",
|
| 1179 |
+
" eval_preds.extend(\n",
|
| 1180 |
+
" tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True)\n",
|
| 1181 |
+
" )\n",
|
| 1182 |
+
"\n",
|
| 1183 |
+
" eval_epoch_loss = eval_loss / len(eval_dataloader)\n",
|
| 1184 |
+
" eval_ppl = torch.exp(eval_epoch_loss)\n",
|
| 1185 |
+
" train_epoch_loss = total_loss / len(train_dataloader)\n",
|
| 1186 |
+
" train_ppl = torch.exp(train_epoch_loss)\n",
|
| 1187 |
+
" print(f\"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}\")"
|
| 1188 |
+
]
|
| 1189 |
+
},
|
| 1190 |
+
{
|
| 1191 |
+
"cell_type": "code",
|
| 1192 |
+
"execution_count": 36,
|
| 1193 |
+
"id": "53752a7b",
|
| 1194 |
+
"metadata": {},
|
| 1195 |
+
"outputs": [
|
| 1196 |
+
{
|
| 1197 |
+
"name": "stdout",
|
| 1198 |
+
"output_type": "stream",
|
| 1199 |
+
"text": [
|
| 1200 |
+
"Hey @nytimes your link to cancel my subscription isn't working and nobody is answering the chat. Please don't play that kind of stupid game.\n",
|
| 1201 |
+
"{'input_ids': tensor([[227985, 5484, 915, 54078, 2566, 7782, 24502, 2632, 8989,\n",
|
| 1202 |
+
" 427, 36992, 2670, 140711, 21994, 10789, 530, 88399, 632,\n",
|
| 1203 |
+
" 183542, 368, 44799, 17, 29901, 5926, 7229, 861, 11596,\n",
|
| 1204 |
+
" 461, 78851, 14775, 17, 77658, 915, 210]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
|
| 1205 |
+
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}\n",
|
| 1206 |
+
"tensor([[227985, 5484, 915, 54078, 2566, 7782, 24502, 2632, 8989,\n",
|
| 1207 |
+
" 427, 36992, 2670, 140711, 21994, 10789, 530, 88399, 632,\n",
|
| 1208 |
+
" 183542, 368, 44799, 17, 29901, 5926, 7229, 861, 11596,\n",
|
| 1209 |
+
" 461, 78851, 14775, 17, 77658, 915, 210, 16449, 5952,\n",
|
| 1210 |
+
" 3]], device='cuda:0')\n",
|
| 1211 |
+
"[\"Tweet text : Hey @nytimes your link to cancel my subscription isn't working and nobody is answering the chat. Please don't play that kind of stupid game. Label : complaint\"]\n"
|
| 1212 |
+
]
|
| 1213 |
+
}
|
| 1214 |
+
],
|
| 1215 |
+
"source": [
|
| 1216 |
+
"model.eval()\n",
|
| 1217 |
+
"i = 16\n",
|
| 1218 |
+
"inputs = tokenizer(f'{text_column} : {dataset[\"test\"][i][\"Tweet text\"]} Label : ', return_tensors=\"pt\")\n",
|
| 1219 |
+
"print(dataset[\"test\"][i][\"Tweet text\"])\n",
|
| 1220 |
+
"print(inputs)\n",
|
| 1221 |
+
"\n",
|
| 1222 |
+
"with torch.no_grad():\n",
|
| 1223 |
+
" inputs = {k: v.to(device) for k, v in inputs.items()}\n",
|
| 1224 |
+
" outputs = model.generate(\n",
|
| 1225 |
+
" input_ids=inputs[\"input_ids\"], attention_mask=inputs[\"attention_mask\"], max_new_tokens=10, eos_token_id=3\n",
|
| 1226 |
+
" )\n",
|
| 1227 |
+
" print(outputs)\n",
|
| 1228 |
+
" print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))"
|
| 1229 |
+
]
|
| 1230 |
+
},
|
| 1231 |
+
{
|
| 1232 |
+
"cell_type": "markdown",
|
| 1233 |
+
"id": "0e21c49b",
|
| 1234 |
+
"metadata": {},
|
| 1235 |
+
"source": [
|
| 1236 |
+
"You can push model to hub or save model locally. \n",
|
| 1237 |
+
"\n",
|
| 1238 |
+
"- Option1: Pushing the model to Hugging Face Hub\n",
|
| 1239 |
+
"```python\n",
|
| 1240 |
+
"model.push_to_hub(\n",
|
| 1241 |
+
" f\"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\".replace(\"/\", \"_\"),\n",
|
| 1242 |
+
" token = \"hf_...\"\n",
|
| 1243 |
+
")\n",
|
| 1244 |
+
"```\n",
|
| 1245 |
+
"token (`bool` or `str`, *optional*):\n",
|
| 1246 |
+
" `token` is to be used for HTTP Bearer authorization when accessing remote files. If `True`, will use the token generated\n",
|
| 1247 |
+
" when running `huggingface-cli login` (stored in `~/.huggingface`). Will default to `True` if `repo_url`\n",
|
| 1248 |
+
" is not specified.\n",
|
| 1249 |
+
" Or you can get your token from https://huggingface.co/settings/token\n",
|
| 1250 |
+
"```\n",
|
| 1251 |
+
"- Or save model locally\n",
|
| 1252 |
+
"```python\n",
|
| 1253 |
+
"peft_model_id = f\"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\".replace(\"/\", \"_\")\n",
|
| 1254 |
+
"model.save_pretrained(peft_model_id)\n",
|
| 1255 |
+
"```"
|
| 1256 |
+
]
|
| 1257 |
+
},
|
| 1258 |
+
{
|
| 1259 |
+
"cell_type": "code",
|
| 1260 |
+
"execution_count": 16,
|
| 1261 |
+
"id": "24041ee1",
|
| 1262 |
+
"metadata": {},
|
| 1263 |
+
"outputs": [],
|
| 1264 |
+
"source": [
|
| 1265 |
+
"# saving model\n",
|
| 1266 |
+
"peft_model_id = f\"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\".replace(\n",
|
| 1267 |
+
" \"/\", \"_\"\n",
|
| 1268 |
+
")\n",
|
| 1269 |
+
"model.save_pretrained(peft_model_id)"
|
| 1270 |
+
]
|
| 1271 |
+
},
|
| 1272 |
+
{
|
| 1273 |
+
"cell_type": "code",
|
| 1274 |
+
"execution_count": null,
|
| 1275 |
+
"id": "527eeaa4",
|
| 1276 |
+
"metadata": {},
|
| 1277 |
+
"outputs": [],
|
| 1278 |
+
"source": [
|
| 1279 |
+
"ckpt = f\"{peft_model_id}/adapter_model.bin\"\n",
|
| 1280 |
+
"!du -h $ckpt"
|
| 1281 |
+
]
|
| 1282 |
+
},
|
| 1283 |
+
{
|
| 1284 |
+
"cell_type": "code",
|
| 1285 |
+
"execution_count": 18,
|
| 1286 |
+
"id": "b19f5a90",
|
| 1287 |
+
"metadata": {},
|
| 1288 |
+
"outputs": [],
|
| 1289 |
+
"source": [
|
| 1290 |
+
"from peft import PeftModel, PeftConfig\n",
|
| 1291 |
+
"\n",
|
| 1292 |
+
"peft_model_id = f\"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\".replace(\n",
|
| 1293 |
+
" \"/\", \"_\"\n",
|
| 1294 |
+
")\n",
|
| 1295 |
+
"\n",
|
| 1296 |
+
"config = PeftConfig.from_pretrained(peft_model_id)\n",
|
| 1297 |
+
"model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path)\n",
|
| 1298 |
+
"model = PeftModel.from_pretrained(model, peft_model_id)"
|
| 1299 |
+
]
|
| 1300 |
+
},
|
| 1301 |
+
{
|
| 1302 |
+
"cell_type": "code",
|
| 1303 |
+
"execution_count": 21,
|
| 1304 |
+
"id": "a11a3768",
|
| 1305 |
+
"metadata": {},
|
| 1306 |
+
"outputs": [
|
| 1307 |
+
{
|
| 1308 |
+
"name": "stdout",
|
| 1309 |
+
"output_type": "stream",
|
| 1310 |
+
"text": [
|
| 1311 |
+
"@greateranglia Ok thanks...\n",
|
| 1312 |
+
"{'input_ids': tensor([[227985, 5484, 915, 2566, 14173, 2960, 29906, 387, 20706,\n",
|
| 1313 |
+
" 49337, 1369, 77658, 915, 210]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}\n",
|
| 1314 |
+
"tensor([[227985, 5484, 915, 2566, 14173, 2960, 29906, 387, 20706,\n",
|
| 1315 |
+
" 49337, 1369, 77658, 915, 210, 1936, 106863, 3]],\n",
|
| 1316 |
+
" device='cuda:0')\n",
|
| 1317 |
+
"['Tweet text : @greateranglia Ok thanks... Label : no complaint']\n"
|
| 1318 |
+
]
|
| 1319 |
+
}
|
| 1320 |
+
],
|
| 1321 |
+
"source": [
|
| 1322 |
+
"model.to(device)\n",
|
| 1323 |
+
"model.eval()\n",
|
| 1324 |
+
"i = 4\n",
|
| 1325 |
+
"inputs = tokenizer(f'{text_column} : {dataset[\"test\"][i][\"Tweet text\"]} Label : ', return_tensors=\"pt\")\n",
|
| 1326 |
+
"print(dataset[\"test\"][i][\"Tweet text\"])\n",
|
| 1327 |
+
"print(inputs)\n",
|
| 1328 |
+
"\n",
|
| 1329 |
+
"with torch.no_grad():\n",
|
| 1330 |
+
" inputs = {k: v.to(device) for k, v in inputs.items()}\n",
|
| 1331 |
+
" outputs = model.generate(\n",
|
| 1332 |
+
" input_ids=inputs[\"input_ids\"], attention_mask=inputs[\"attention_mask\"], max_new_tokens=10, eos_token_id=3\n",
|
| 1333 |
+
" )\n",
|
| 1334 |
+
" print(outputs)\n",
|
| 1335 |
+
" print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))"
|
| 1336 |
+
]
|
| 1337 |
+
},
|
| 1338 |
+
{
|
| 1339 |
+
"cell_type": "code",
|
| 1340 |
+
"execution_count": null,
|
| 1341 |
+
"id": "f890c951",
|
| 1342 |
+
"metadata": {},
|
| 1343 |
+
"outputs": [],
|
| 1344 |
+
"source": []
|
| 1345 |
+
},
|
| 1346 |
+
{
|
| 1347 |
+
"cell_type": "code",
|
| 1348 |
+
"execution_count": null,
|
| 1349 |
+
"id": "463a41a2",
|
| 1350 |
+
"metadata": {},
|
| 1351 |
+
"outputs": [],
|
| 1352 |
+
"source": []
|
| 1353 |
+
},
|
| 1354 |
+
{
|
| 1355 |
+
"cell_type": "code",
|
| 1356 |
+
"execution_count": null,
|
| 1357 |
+
"id": "5c60c7a9",
|
| 1358 |
+
"metadata": {},
|
| 1359 |
+
"outputs": [],
|
| 1360 |
+
"source": []
|
| 1361 |
+
}
|
| 1362 |
+
],
|
| 1363 |
+
"metadata": {
|
| 1364 |
+
"kernelspec": {
|
| 1365 |
+
"display_name": "Python 3 (ipykernel)",
|
| 1366 |
+
"language": "python",
|
| 1367 |
+
"name": "python3"
|
| 1368 |
+
},
|
| 1369 |
+
"language_info": {
|
| 1370 |
+
"codemirror_mode": {
|
| 1371 |
+
"name": "ipython",
|
| 1372 |
+
"version": 3
|
| 1373 |
+
},
|
| 1374 |
+
"file_extension": ".py",
|
| 1375 |
+
"mimetype": "text/x-python",
|
| 1376 |
+
"name": "python",
|
| 1377 |
+
"nbconvert_exporter": "python",
|
| 1378 |
+
"pygments_lexer": "ipython3",
|
| 1379 |
+
"version": "3.10.5"
|
| 1380 |
+
},
|
| 1381 |
+
"vscode": {
|
| 1382 |
+
"interpreter": {
|
| 1383 |
+
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
|
| 1384 |
+
}
|
| 1385 |
+
}
|
| 1386 |
+
},
|
| 1387 |
+
"nbformat": 4,
|
| 1388 |
+
"nbformat_minor": 5
|
| 1389 |
+
}
|