Spaces:
Sleeping
Sleeping
Update tools_engine.py
Browse files- tools_engine.py +56 -17
tools_engine.py
CHANGED
|
@@ -1,44 +1,83 @@
|
|
| 1 |
"""
|
| 2 |
-
Nexari Tools Engine (Lazy Loading
|
|
|
|
|
|
|
| 3 |
"""
|
|
|
|
| 4 |
from duckduckgo_search import DDGS
|
| 5 |
from transformers import pipeline
|
| 6 |
|
| 7 |
-
# Global variable
|
| 8 |
_intent_classifier = None
|
| 9 |
|
| 10 |
-
def
|
|
|
|
|
|
|
|
|
|
| 11 |
global _intent_classifier
|
| 12 |
if _intent_classifier is None:
|
| 13 |
-
print(">>> Tools: Loading Intent Model
|
| 14 |
_intent_classifier = pipeline("zero-shot-classification", model="typeform/distilbert-base-uncased-mnli")
|
| 15 |
return _intent_classifier
|
| 16 |
|
| 17 |
def analyze_intent(user_text):
|
|
|
|
|
|
|
|
|
|
| 18 |
text_lower = user_text.lower().strip()
|
| 19 |
|
| 20 |
-
#
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
| 24 |
|
|
|
|
| 25 |
try:
|
| 26 |
-
# Load
|
| 27 |
-
classifier =
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
result = classifier(user_text, candidate_labels)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
if
|
| 32 |
-
return
|
| 33 |
except Exception as e:
|
| 34 |
print(f"Intent Error: {e}")
|
| 35 |
|
| 36 |
-
return "
|
| 37 |
|
| 38 |
def perform_web_search(user_text):
|
|
|
|
|
|
|
|
|
|
| 39 |
try:
|
| 40 |
-
clean_query = user_text.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
results = DDGS().text(clean_query, max_results=3)
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
return None
|
|
|
|
| 1 |
"""
|
| 2 |
+
Nexari Tools Engine (Lazy Loading)
|
| 3 |
+
Author: Piyush
|
| 4 |
+
Description: Loads the Intent Brain only when needed to prevent Server Crash.
|
| 5 |
"""
|
| 6 |
+
|
| 7 |
from duckduckgo_search import DDGS
|
| 8 |
from transformers import pipeline
|
| 9 |
|
| 10 |
+
# Global variable to hold the model (initially empty)
|
| 11 |
_intent_classifier = None
|
| 12 |
|
| 13 |
+
def get_intent_model():
|
| 14 |
+
"""
|
| 15 |
+
Loads model only if it's not already loaded.
|
| 16 |
+
"""
|
| 17 |
global _intent_classifier
|
| 18 |
if _intent_classifier is None:
|
| 19 |
+
print(">>> Tools: Lazy Loading Intent Model...")
|
| 20 |
_intent_classifier = pipeline("zero-shot-classification", model="typeform/distilbert-base-uncased-mnli")
|
| 21 |
return _intent_classifier
|
| 22 |
|
| 23 |
def analyze_intent(user_text):
|
| 24 |
+
"""
|
| 25 |
+
Decides intent with Safety Layer + Lazy Loading.
|
| 26 |
+
"""
|
| 27 |
text_lower = user_text.lower().strip()
|
| 28 |
|
| 29 |
+
# LAYER 1: HARDCODED SAFETY
|
| 30 |
+
direct_chat_triggers = ["hi", "hello", "hey", "hlo", "hola", "namaste", "what is your name", "who are you"]
|
| 31 |
+
|
| 32 |
+
if text_lower in direct_chat_triggers or any(text_lower.startswith(t + " ") for t in direct_chat_triggers):
|
| 33 |
+
return "general conversation"
|
| 34 |
|
| 35 |
+
# LAYER 2: LAZY NEURAL NETWORK
|
| 36 |
try:
|
| 37 |
+
# Load Model Here (On Demand)
|
| 38 |
+
classifier = get_intent_model()
|
| 39 |
+
|
| 40 |
+
candidate_labels = [
|
| 41 |
+
"internet search",
|
| 42 |
+
"general conversation",
|
| 43 |
+
"coding request",
|
| 44 |
+
"checking time"
|
| 45 |
+
]
|
| 46 |
+
|
| 47 |
result = classifier(user_text, candidate_labels)
|
| 48 |
+
top_intent = result['labels'][0]
|
| 49 |
+
confidence = result['scores'][0]
|
| 50 |
+
|
| 51 |
+
print(f">>> Brain: Detected '{top_intent}' ({confidence:.2f})")
|
| 52 |
|
| 53 |
+
if confidence > 0.5:
|
| 54 |
+
return top_intent
|
| 55 |
except Exception as e:
|
| 56 |
print(f"Intent Error: {e}")
|
| 57 |
|
| 58 |
+
return "general conversation"
|
| 59 |
|
| 60 |
def perform_web_search(user_text):
|
| 61 |
+
"""
|
| 62 |
+
Executes search.
|
| 63 |
+
"""
|
| 64 |
try:
|
| 65 |
+
clean_query = user_text.lower()
|
| 66 |
+
remove_phrases = ["search for", "google", "find", "tell me about", "latest info on", "news about"]
|
| 67 |
+
for phrase in remove_phrases:
|
| 68 |
+
clean_query = clean_query.replace(phrase, "")
|
| 69 |
+
|
| 70 |
+
clean_query = clean_query.strip()
|
| 71 |
+
if len(clean_query) < 2: clean_query = user_text
|
| 72 |
+
|
| 73 |
+
print(f">>> Action: Searching Web for '{clean_query}'...")
|
| 74 |
results = DDGS().text(clean_query, max_results=3)
|
| 75 |
+
|
| 76 |
+
if results:
|
| 77 |
+
# Return raw list
|
| 78 |
+
return results
|
| 79 |
+
return None
|
| 80 |
+
|
| 81 |
+
except Exception as e:
|
| 82 |
+
print(f"Search Error: {e}")
|
| 83 |
return None
|