Nexari-Server / context_engine.py
Nexari-Research's picture
Update context_engine.py
88014f9 verified
# context_engine.py
"""
Model-free context & emotion heuristics.
Replaces the prior transformer-based emotion classifier with a
fast, deterministic heuristic that infers:
- primary_emotion: one of ('joy','sadness','anger','fear','surprise','neutral')
- emotion_confidence: float (0.0 - 1.0) indicating heuristic strength
- conversation_mode: Ping-Pong / Standard / Deep Dive
- emoji suggestions and min-word guidance
Design notes:
- Uses emoji presence, punctuation, uppercase emphasis, keywords, negations,
question density, message length, and repetition to infer emotion.
- Intentionally conservative: returns moderate confidences unless strong signals.
- No external libraries or model downloads required.
"""
from typing import Tuple
import re
# Keyword lists (tunable)
_JOY_KEYWORDS = {"happy", "great", "awesome", "fantastic", "nice", "love", "yay", "yay!", "cool", "amazing", "thanks", "thank you", "cheers"}
_SADNESS_KEYWORDS = {"sad", "unhappy", "depressed", "upset", "down", "sadder", "melancholy", "sorrow", "lonely"}
_ANGER_KEYWORDS = {"angry", "frustrat", "frustrated", "mad", "furious", "annoyed", "irritat", "rage", "disgusted"}
_FEAR_KEYWORDS = {"scared", "afraid", "anxious", "worried", "panic", "nervous", "fear"}
_SURPRISE_KEYWORDS = {"wow", "whoa", "surpris", "unexpected", "amazed", "shocked"}
_NEGATIONS = {"not", "don't", "didn't", "can't", "couldn't", "won't", "never", "n't"}
_EMOJI_POSITIVE = {"๐Ÿ˜Š","๐Ÿ™‚","๐Ÿ˜„","๐Ÿ˜","๐ŸŽ‰","๐Ÿ‘","๐Ÿค","๐Ÿ˜ƒ","โœจ","๐Ÿ˜"}
_EMOJI_NEGATIVE = {"๐Ÿ˜ข","๐Ÿ˜ž","โ˜น๏ธ","๐Ÿ˜ก","๐Ÿ˜ญ","๐Ÿ˜ ","๐Ÿ˜ค","๐Ÿ˜–","๐Ÿ˜ฉ","๐Ÿ˜“"}
_EMOJI_SURPRISE = {"๐Ÿ˜ฒ","๐Ÿ˜ฏ","๐Ÿ˜ฎ","๐Ÿคฏ","๐Ÿ˜ณ"}
def _count_emojis(text: str):
# simple unicode emoji detection by ranges + common emoji symbols (lightweight)
# also check presence in our small emoji sets
pos = sum(1 for e in _EMOJI_POSITIVE if e in text)
neg = sum(1 for e in _EMOJI_NEGATIVE if e in text)
sup = sum(1 for e in _EMOJI_SURPRISE if e in text)
# rough generic emoji count (fallback)
generic = len(re.findall(r'[\U0001F300-\U0001FAFF\U00002700-\U000027BF]', text))
return {"positive": pos, "negative": neg, "surprise": sup, "generic": generic}
def _word_tokens(text: str):
return re.findall(r"\w+", text.lower())
def _keyword_score(tokens, keywords):
return sum(1 for t in tokens if any(t.startswith(k) for k in keywords))
def _has_upper_emphasis(text: str):
# Count words that are ALL CAPS and length>=2
caps = [w for w in re.findall(r"\b[A-Z]{2,}\b", text)]
return len(caps)
def _question_density(tokens, text: str):
qwords = {"what","why","how","which","when","where","who","do","does","did","can","could","would","should","is","are","was","were"}
qcount = sum(1 for t in tokens if t in qwords)
total = max(1, len(tokens))
return qcount / total
def _detect_emotion(text: str) -> Tuple[str, float]:
"""
Rule-based emotion detection.
Returns (label, confidence)
"""
if not text or not text.strip():
return ("neutral", 0.0)
t = text.strip()
tokens = _word_tokens(t)
lower = t.lower()
# simple signals
emoji_counts = _count_emojis(t)
positive_emoji = emoji_counts["positive"]
negative_emoji = emoji_counts["negative"]
surprise_emoji = emoji_counts["surprise"]
generic_emoji = emoji_counts["generic"]
upper_caps = _has_upper_emphasis(t)
exclamations = t.count("!")
question_marks = t.count("?")
repeated_punct = bool(re.search(r'([!?])\1{2,}', t)) # e.g., "!!!" or "???" or "!?!!"
# keyword matches
joy_kw = _keyword_score(tokens, _JOY_KEYWORDS)
sad_kw = _keyword_score(tokens, _SADNESS_KEYWORDS)
anger_kw = _keyword_score(tokens, _ANGER_KEYWORDS)
fear_kw = _keyword_score(tokens, _FEAR_KEYWORDS)
surprise_kw = _keyword_score(tokens, _SURPRISE_KEYWORDS)
negation_present = any(n in tokens for n in _NEGATIONS)
q_density = _question_density(tokens, t)
length = len(tokens)
# scoring heuristics (base 0)
scores = {
"joy": 0.0,
"sadness": 0.0,
"anger": 0.0,
"fear": 0.0,
"surprise": 0.0,
"neutral": 0.0
}
# Emoji-weighted signals
scores["joy"] += positive_emoji * 0.35
scores["sadness"] += negative_emoji * 0.4
scores["surprise"] += surprise_emoji * 0.4
# Keyword signals (normalized)
scores["joy"] += min(joy_kw * 0.25, 1.0)
scores["sadness"] += min(sad_kw * 0.3, 1.0)
scores["anger"] += min(anger_kw * 0.35, 1.0)
scores["fear"] += min(fear_kw * 0.3, 1.0)
scores["surprise"] += min(surprise_kw * 0.3, 1.0)
# punctuation / emphasis
if exclamations >= 2 or upper_caps >= 2 or repeated_punct:
# could be joy or anger depending on words
if joy_kw or positive_emoji:
scores["joy"] += 0.4
if anger_kw or negative_emoji:
scores["anger"] += 0.45
# otherwise, boost surprise
if not (joy_kw or anger_kw):
scores["surprise"] += 0.25
# question-dense messages -> information-seeking / surprise / neutral
if q_density > 0.2 or question_marks >= 1:
scores["surprise"] += 0.2
scores["neutral"] += 0.15
# negativity via negation nearby to positive words -> reduce joy, raise neutral/anger
if negation_present and joy_kw:
scores["joy"] = max(0.0, scores["joy"] - 0.5)
scores["neutral"] += 0.2
scores["anger"] += 0.1
# sadness signals for short emotive messages like "so sad" or "feeling down"
if sad_kw and length <= 6:
scores["sadness"] += 0.3
# length-based adjust: very short messages default to small_talk/neutral unless strong signal
if length <= 3 and sum(scores.values()) < 0.5:
scores["neutral"] += 0.5
# normalize into selection
# pick top-scoring emotion
top_em = max(scores.items(), key=lambda kv: kv[1])
label = top_em[0]
raw_score = float(top_em[1])
# compute confidence: scale raw_score to 0..1 with heuristics
# higher length + multiple signals -> higher confidence
confidence = raw_score
# boost confidence for multiple corroborating signals
corroborators = 0
if positive_emoji + negative_emoji + surprise_emoji + generic_emoji > 0:
corroborators += 1
if upper_caps > 0 or exclamations > 0 or repeated_punct:
corroborators += 1
if any([joy_kw, sad_kw, anger_kw, fear_kw, surprise_kw]):
corroborators += 1
# boost based on corroborators (0..3)
confidence = min(1.0, confidence + (0.12 * corroborators))
# fallback: if very low signal, mark neutral with low confidence
if confidence < 0.15:
label = "neutral"
confidence = round(max(confidence, 0.05), 2)
else:
confidence = round(confidence, 2)
return (label, confidence)
def get_smart_context(user_text: str):
"""
Returns a short persona instruction block including:
- Conversation Mode
- Emotional context (heuristic)
- Emoji suggestions
- Minimum verbosity hint
"""
try:
text = (user_text or "").strip()
label, confidence = _detect_emotion(text)
word_count = len(_word_tokens(text))
q_density = _question_density(_word_tokens(text), text)
# Conversation Mode determination (same as before)
if word_count < 4:
conversation_mode = "Ping-Pong Mode (Fast)"
min_words_hint = 12
elif word_count < 20:
conversation_mode = "Standard Chat Mode (Balanced)"
min_words_hint = 30
else:
conversation_mode = "Deep Dive Mode (Detailed)"
min_words_hint = 70
# Map emotion label to friendly guidance & emoji suggestions
if label == "joy":
emotional_context = "User: Positive/Energetic. Vibe: Upbeat โ€” be warm and slightly playful."
emoji_examples = "๐Ÿ˜Š ๐ŸŽ‰ ๐Ÿ™‚"
emoji_range = (1, 2)
elif label == "sadness":
emotional_context = "User: Low Energy. Vibe: Supportive โ€” be gentle and empathetic."
emoji_examples = "๐Ÿค ๐ŸŒค๏ธ"
emoji_range = (0, 1)
elif label == "anger":
emotional_context = "User: Frustrated. Vibe: De-escalate โ€” calm, solution-first."
emoji_examples = "๐Ÿ™ ๐Ÿ› ๏ธ"
emoji_range = (0, 1)
elif label == "fear":
emotional_context = "User: Anxious. Vibe: Reassure and clarify."
emoji_examples = "๐Ÿค ๐Ÿ›ก๏ธ"
emoji_range = (0, 1)
elif label == "surprise":
emotional_context = "User: Curious/Alert. Vibe: Engage and explain."
emoji_examples = "๐Ÿค” โœจ"
emoji_range = (0, 2)
else:
emotional_context = "User: Neutral/Professional. Vibe: Helpful and efficient."
emoji_examples = "๐Ÿ’ก ๐Ÿ™‚"
emoji_range = (0, 2)
# Slightly adjust min_words_hint if question density is high
if q_density > 0.25:
min_words_hint = max(min_words_hint, 30)
# Build instruction block
return (
f"\n[PSYCHOLOGICAL PROFILE]\n"
f"1. Interaction Mode: {conversation_mode}\n"
f"2. {emotional_context} (detected_emotion={label}, confidence={confidence})\n"
f"3. Emoji Suggestions: Use {emoji_range[0]}โ€“{emoji_range[1]} emoji(s). Examples: {emoji_examples}\n"
f"4. Minimum Word Guidance: Aim for ~{min_words_hint} words unless user explicitly requests 'short' or 'brief'.\n"
f"5. Directive: Mirror user's energy; prefer natural phrasing and avoid robotic one-line replies.\n"
)
except Exception as e:
# conservative fallback
return (
"\n[PSYCHOLOGICAL PROFILE]\n"
"1. Interaction Mode: Standard Chat Mode (Balanced)\n"
"2. User: Neutral. Vibe: Helpful and efficient.\n"
"3. Emoji Suggestions: Use 0โ€“1 emoji. Examples: ๐Ÿ™‚\n"
"4. Minimum Word Guidance: Aim for ~30 words.\n"
)