File size: 14,373 Bytes
9d1f57d
8954d0c
9d1f57d
 
 
 
 
 
 
 
 
 
 
8954d0c
 
9d1f57d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8954d0c
 
9d1f57d
 
8954d0c
9d1f57d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbc8175
9d1f57d
 
 
 
 
 
 
 
fbc8175
9d1f57d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8954d0c
9d1f57d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbc8175
9d1f57d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
# behavior_model.py  -- REPLACED with "Neural Structure / MoE-style Dispatcher"
"""
Large, modular 'neural structure' dispatcher (software MoE) for intent/complexity routing.

How to use:
- Replace your existing behavior_model.py with this file.
- app.py expects analyze_flow(messages) -> dict with keys:
    { route: "direct"|"planning", is_complex: bool, flow_label: str, confidence: float, explanation: str, experts: [...] }

Design:
- Feature extractor -> gating network (scoring) -> top-K expert selection -> combine/explain decision
- Experts are modular callables; by default they are heuristic "experts".
- To scale: implement Expert.run(...) to call real submodels/endpoints (local small models, remote microservices).
"""

from typing import List, Dict, Any, Callable, Tuple
import re
import math
import json
import os
import statistics

# ---------- Configurable constants ----------
TOP_K = int(os.environ.get("NS_TOP_K", "2"))         # how many experts to activate per request
SOFTMAX_TEMPERATURE = float(os.environ.get("NS_TEMP", "1.0"))
MIN_COMPLEX_CONF_FOR_PLANNING = float(os.environ.get("NS_MIN_COMPLEX_CONF", "0.56"))
MAX_EXPERTS = int(os.environ.get("NS_MAX_EXPERTS", "12"))

# Weights (tunables)
WEIGHT_LENGTH = float(os.environ.get("NS_W_LENGTH", "1.0"))
WEIGHT_KEYWORD = float(os.environ.get("NS_W_KEYWORD", "1.9"))
WEIGHT_CODE = float(os.environ.get("NS_W_CODE", "2.4"))
WEIGHT_NUMERIC = float(os.environ.get("NS_W_NUMERIC", "1.2"))
WEIGHT_QUESTION = float(os.environ.get("NS_W_QUESTION", "0.6"))
WEIGHT_URGENT = float(os.environ.get("NS_W_URGENT", "2.2"))
WEIGHT_HISTORY = float(os.environ.get("NS_W_HISTORY", "0.8"))

# ---------- Regex / keyword lists ----------
_code_fence_re = re.compile(r"```.+?```", flags=re.DOTALL | re.IGNORECASE)
_inline_code_re = re.compile(r"`[^`]+`")
_number_re = re.compile(r"\b\d+(\.\d+)?\b")
_list_marker_re = re.compile(r"(^\s*[-*β€’]\s+)|(^\s*\d+\.\s+)", flags=re.MULTILINE)
_url_re = re.compile(r"https?://\S+")
_question_word_re = re.compile(r"^\s*(who|what|why|how|when|which|where)\b", flags=re.IGNORECASE)
_question_mark_re = re.compile(r"\?$")

_task_keywords = set(k.lower() for k in [
    "build", "create", "implement", "develop", "deploy", "install", "setup", "configure",
    "optimi", "debug", "fix", "error", "crash", "stacktrace", "exception", "traceback",
    "code", "script", "function", "api", "endpoint", "database", "sql", "mongodb", "mysql",
    "docker", "deno", "node", "express", "php", "python", "java", "rust", "golang", "compile",
    "performance", "latency", "bandwidth", "optimization", "optimize",
    "algorithm", "complexity", "big o", "time complexity", "space complexity",
    "report", "plan", "design", "architecture", "integration", "migrate", "refactor",
    "test case", "unit test", "e2e test",
    "prove", "derive", "integral", "differentiate", "matrix", "neural network", "train", "model",
])

_urgent_words = set(w.lower() for w in ["urgent", "asap", "immediately", "now", "critical", "important", "priority", "must"])
_short_chat_terms = set(w.lower() for w in ["hi", "hello", "thanks", "thank you", "bye", "ok", "okay", "nice", "cool", "πŸ™‚", "😊"])

# ---------- Utility functions ----------
def _word_count(text: str) -> int:
    return len(re.findall(r"\w+", text)) if text else 0

def _has_code(text: str) -> bool:
    if not text: return False
    return bool(_code_fence_re.search(text) or _inline_code_re.search(text) or re.search(r"\bdef\s+\w+\(|;\s*$", text, flags=re.IGNORECASE))

def _has_list(text: str) -> bool:
    return bool(_list_marker_re.search(text))

def _keyword_matches(text: str) -> int:
    if not text: return 0
    t = text.lower()
    cnt = 0
    for kw in _task_keywords:
        if kw in t:
            cnt += 1
    return cnt

def _numeric_count(text: str) -> int:
    return len(_number_re.findall(text or ""))

def _is_urgent(text: str) -> bool:
    t = (text or "").lower()
    return any(w in t for w in _urgent_words)

def _short_chat_score(text: str) -> bool:
    t = (text or "").strip().lower()
    if len(t.split()) <= 2 and any(tok in t for tok in _short_chat_terms):
        return True
    return False

def _question_score(text: str) -> float:
    s = 0.0
    if _question_mark_re.search(text or ""): s += 1.0
    if _question_word_re.match((text or "").strip()): s += 0.6
    return s

def _history_signal(messages: List[Dict[str,str]]) -> float:
    # simple heuristic: if previous user messages contained technical keywords recently, boost
    if not messages or len(messages) < 2: return 0.0
    prev = " ".join(m.get("content","") for m in messages[-4:-1] if isinstance(m, dict))
    return float(min(3, _keyword_matches(prev))) * 0.2

# ---------- Softmax helper ----------
def _softmax(scores: List[float], temp: float = 1.0) -> List[float]:
    if not scores:
        return []
    exps = [math.exp(s / temp) for s in scores]
    s = sum(exps)
    if s == 0: return [1.0/len(scores)]*len(scores)
    return [e/s for e in exps]

# ---------- Expert base classes ----------
class Expert:
    name: str
    description: str

    def __init__(self, name:str, description:str):
        self.name = name
        self.description = description

    def score(self, features: Dict[str,Any]) -> float:
        """Return a heuristic affinity score (higher = more relevant)."""
        # default neutral
        return 0.0

    def run(self, messages: List[Dict[str,str]], features: Dict[str,Any]) -> Dict[str,Any]:
        """
        Optionally run expert-specific logic (synchronously).
        For now return metadata only. In production this could call a model endpoint.
        """
        return {"expert": self.name, "action": "noop", "note": "heuristic-only"}

# ---------- Concrete experts ----------
class ShortChatExpert(Expert):
    def __init__(self):
        super().__init__("short_chat", "Handles greetings/short conversational turns")

    def score(self, f):
        if f.get("short_chat"): return 5.0
        return 0.1

    def run(self, messages, features):
        return {"expert": self.name, "action": "short_reply", "note": "Use concise response template."}

class CodeExpert(Expert):
    def __init__(self):
        super().__init__("code_expert", "Handles code, stacktraces, debugging tasks")

    def score(self, f):
        sc = 0.0
        if f.get("has_code"): sc += 4.0
        sc += 0.8 * f.get("kw_count",0)
        sc += 0.6 * f.get("numeric_count",0)
        return sc

    def run(self, messages, features):
        # Placeholder: in production call a code-specialized model or analyzer endpoint
        return {"expert": self.name, "action": "analyze_code", "note": "Run code LLM or static-checker (not implemented)."}

class NLUExpert(Expert):
    def __init__(self):
        super().__init__("nlu_expert", "Deep intent and slot extraction / classification")

    def score(self, f):
        sc = 1.0 * f.get("kw_count",0)
        sc += 0.8 * f.get("question_score",0)
        sc += 0.4 * (f.get("word_count",0) / 30.0)
        sc += 0.6 * f.get("history_signal",0)
        return sc

    def run(self, messages, features):
        # Example: return intent classification tags (heuristic)
        intent = "general"
        if features.get("kw_count",0) >= 2 or features.get("has_code"):
            intent = "technical_task"
        elif features.get("short_chat"):
            intent = "social"
        return {"expert": self.name, "action": "classify_intent", "intent": intent}

class RAGExpert(Expert):
    def __init__(self):
        super().__init__("rag_expert", "Handles retrieval-augmented requests (RAG/agent)")

    def score(self, f):
        sc = 0.0
        # if user mentions 'search', 'latest', has urls, or long context -> RAG useful
        if f.get("has_url"): sc += 2.0
        sc += 1.2 * f.get("kw_count",0)
        sc += 0.9 * f.get("numeric_count",0)
        if f.get("word_count",0) > 60: sc += 1.5
        return sc

    def run(self, messages, features):
        # Placeholder: should trigger a retrieval job or agent
        return {"expert": self.name, "action": "retrieve", "note": "Trigger RAG pipeline or agent (not implemented)."}

class SafetyExpert(Expert):
    def __init__(self):
        super().__init__("safety_expert", "Safety checks, identity questions, hallucination guards")

    def score(self, f):
        sc = 0.0
        txt = f.get("last_text","").lower() if f.get("last_text") else ""
        if any(w in txt for w in ["who created you","who made you","identity","where are you from"]):
            sc += 3.0
        # any suspicious tokens (email, ssn, credit card-like) -> safety
        if re.search(r"\b\d{4}[- ]?\d{4}[- ]?\d{4}[- ]?\d{4}\b", txt):
            sc += 4.0
        return sc

    def run(self, messages, features):
        return {"expert": self.name, "action": "safety_check", "note": "Run policy checks."}

# Add more experts as needed...
_DEFAULT_EXPERTS: List[Expert] = [
    ShortChatExpert(),
    NLUExpert(),
    CodeExpert(),
    RAGExpert(),
    SafetyExpert(),
]

# ---------- Core gating/routing function ----------
def _extract_features(messages: List[Dict[str,str]]) -> Dict[str,Any]:
    if not messages:
        return {"word_count": 0, "kw_count":0, "has_code": False, "numeric_count":0, "question_score":0.0, "short_chat": False, "has_url": False, "history_signal":0.0, "last_text":""}
    last = messages[-1].get("content","") if isinstance(messages[-1], dict) else str(messages[-1])
    prev = " ".join(m.get("content","") for m in messages[:-1] if isinstance(m, dict))
    full = (prev + "\n" + last).strip()

    features = {}
    features["last_text"] = last
    features["word_count"] = _word_count(last)
    features["total_word_count"] = _word_count(full)
    features["kw_count"] = _keyword_matches(full)
    features["has_code"] = _has_code(full)
    features["has_list"] = _has_list(full)
    features["numeric_count"] = _numeric_count(full)
    features["question_score"] = _question_score(last)
    features["short_chat"] = _short_chat_score(last)
    features["has_url"] = bool(_url_re.search(full))
    features["is_urgent"] = _is_urgent(full)
    features["history_signal"] = _history_signal(messages)
    return features

def _gate_select_experts(features: Dict[str,Any], experts: List[Expert]) -> Tuple[List[Tuple[Expert,float]], List[float]]:
    # compute raw scores per expert
    raw_scores = [max(0.0, e.score(features)) for e in experts]
    if not raw_scores:
        return [], []

    # normalize via softmax for relative weighting
    probs = _softmax(raw_scores, temp=SOFTMAX_TEMPERATURE)
    # select top-K experts by probability
    indexed = list(enumerate(probs))
    indexed.sort(key=lambda x: x[1], reverse=True)
    top = indexed[:TOP_K]
    chosen = [(experts[i], probs[i]) for i, _ in top]
    return chosen, probs

# ---------- Public API: analyze_flow ----------
def analyze_flow(messages: List[Dict[str,str]]) -> Dict[str,Any]:
    """
    Returns:
    {
      "route": "direct" / "planning",
      "is_complex": bool,
      "flow_label": str,
      "confidence": float,
      "explanation": str,
      "experts": [ {"name":.., "score":.., "note":..}, ... ]
    }
    """
    features = _extract_features(messages)
    experts = _DEFAULT_EXPERTS.copy()

    # gating
    chosen, probs = _gate_select_experts(features, experts)

    # Decide flow_label heuristics based on features
    flow_label = "general"
    if features.get("has_code") or features.get("kw_count",0) >= 2:
        flow_label = "coding_request"
    elif features.get("is_urgent"):
        flow_label = "escalation"
    elif features.get("kw_count",0) >= 1 and features.get("word_count",0) >= 25:
        flow_label = "task_request"
    elif features.get("short_chat"):
        flow_label = "short_chat"
    elif features.get("question_score",0) > 0.9 and features.get("word_count",0) < 25:
        flow_label = "short_question"

    # compute a complexity/confidence scalar from features + expert probs
    feature_score = (
        WEIGHT_LENGTH * (features.get("word_count",0) / 30.0) +
        WEIGHT_KEYWORD * features.get("kw_count",0) +
        WEIGHT_CODE * (4.0 if features.get("has_code") else 0.0) +
        WEIGHT_NUMERIC * features.get("numeric_count",0) +
        WEIGHT_QUESTION * features.get("question_score",0) +
        WEIGHT_URGENT * (1.0 if features.get("is_urgent") else 0.0) +
        WEIGHT_HISTORY * features.get("history_signal",0)
    )

    # Map to 0..1 via logistic
    conf = 1.0 / (1.0 + math.exp(-0.45 * (feature_score - 2.0)))
    conf = max(0.0, min(1.0, conf))

    # route decision
    is_complex = conf >= MIN_COMPLEX_CONF_FOR_PLANNING or features.get("has_code") or features.get("kw_count",0) >= 2
    # short-chat override: always direct
    if features.get("short_chat"):
        route = "direct"
        is_complex = False
    else:
        route = "planning" if is_complex else "direct"

    # Build explanation and expert list
    expert_list = []
    for e, p in chosen:
        # we can call run() here for metadata without actually executing heavy ops
        meta = e.run(messages, features)
        expert_list.append({"name": e.name, "prob": round(float(p),4), "meta": meta})

    explanation = ("features=" + json.dumps(features) + f" | feature_score={feature_score:.2f} | conf={conf:.3f} | chosen={[e.name for e,_ in chosen]}")
    return {
        "route": route,
        "is_complex": bool(is_complex),
        "flow_label": flow_label,
        "confidence": round(float(conf), 3),
        "explanation": explanation,
        "experts": expert_list
    }

# ---------- Debug helper ----------
def debug_flow(text: str, history: List[str] = None):
    hist_msgs = [{"role":"user","content":h} for h in (history or [])]
    hist_msgs.append({"role":"user","content": text})
    return analyze_flow(hist_msgs)

# Example self-test when run directly
if __name__ == "__main__":
    tests = [
        "Hi πŸ™‚",
        "What is your name?",
        "What is neural network",
        "My app crashes with TypeError: undefined is not a function. Stacktrace: ```TypeError: ...``` How to fix?",
        "Deploy my node app to Docker with Nginx and SSL β€” step-by-step please.",
        "Quick: 2+2?"
    ]
    for t in tests:
        print("----")
        print("MSG:", t)
        out = debug_flow(t)
        print(json.dumps(out, indent=2))