Spaces:
Sleeping
Sleeping
File size: 17,398 Bytes
c5fd417 de3f150 c5fd417 4a5949c c5fd417 ac602d0 c5fd417 ac602d0 c5fd417 c35f287 c5fd417 de3f150 a64efbb 8f16066 a64efbb de3f150 ae0e027 de3f150 ae0e027 de3f150 ae0e027 c5fd417 ae0e027 c5fd417 c35f287 c5fd417 c35f287 4a5949c c35f287 c5fd417 4a5949c c5fd417 c35f287 c5fd417 c35f287 c5fd417 4a5949c c5fd417 c35f287 c5fd417 4a5949c c5fd417 c35f287 c5fd417 c35f287 c5fd417 4a5949c c5fd417 c35f287 c5fd417 c35f287 c5fd417 677ec14 c5fd417 c35f287 677ec14 c5fd417 c35f287 c5fd417 4a5949c c5fd417 c35f287 c5fd417 ae0e027 c5fd417 4a5949c c5fd417 c35f287 c5fd417 4a5949c c5fd417 c35f287 c5fd417 c35f287 c5fd417 c35f287 c5fd417 c35f287 c5fd417 c35f287 c5fd417 c35f287 c5fd417 677ec14 c5fd417 677ec14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
from transformers import SwinForImageClassification, AutoFeatureExtractor
from PIL import Image, ImageOps
import torch
from ultralytics import YOLO
# Index classes
nature_to_idx = {0: 'Precancerous', 1: 'Malign', 2: 'Benign', 3: 'Benign',
4: 'Malign', 5: 'Benign', 6: 'Malign', 7: 'Benign'}
class_to_idx = {0: 'Actinic keratosis', 1: 'Basal cell carcinoma', 2: 'Benign keratosis', 3: 'Dermatofibroma',
4: 'Melanoma', 5: 'Melanocytic nevus', 6: 'Squamous cell carcinoma', 7: 'Vascular lesion'}
# Loading Model
loaded_model_dir = "models/best_swin"
original_model_dir = "microsoft/swin-base-patch4-window7-224"
yolo_model_dir = "models/yolo_BB.pt"
device = "cuda" if torch.cuda.is_available() else "cpu"
model = SwinForImageClassification.from_pretrained(loaded_model_dir, torch_dtype="auto")
model.eval()
feature_extractor = AutoFeatureExtractor.from_pretrained(original_model_dir)
yolo_model = YOLO(yolo_model_dir)
# Function for diagnoses based on image passed as paramether
def predicted_diagnosis(img):
target_size = (640, 640)
fill_color = (114, 114, 114)
img.thumbnail(target_size, Image.LANCZOS)
padded_image = ImageOps.pad(img, target_size, color=fill_color)
crop_result = yolo_model(padded_image)[0]
boxes = crop_result.boxes.xyxy
if len(boxes) == 0:
crop = padded_image # fallback: usa l'intera immagine
else:
x1, y1, x2, y2 = map(int, boxes[0])
crop = padded_image.crop((x1, y1, x2, y2))
extracted = feature_extractor(images=crop, return_tensors='pt').to(device)
with torch.no_grad():
outputs = model(**extracted)
logits = outputs.logits # shape [1, num_classes]
probs = torch.softmax(logits, dim=-1) # probabilità per classe
pred_class_idx = torch.argmax(probs, dim=-1).item()
pred_class_prob = probs[0, pred_class_idx].item()
return crop, nature_to_idx[pred_class_idx], class_to_idx[pred_class_idx], pred_class_prob
"""## Platform code
"""
import os
import gradio as gr
import json
BASE_DIR = 'my_project'
os.makedirs(BASE_DIR, exist_ok=True)
IMG_DIR = os.path.join(BASE_DIR, 'images')
os.makedirs(IMG_DIR, exist_ok=True)
JSON_DATA_DIR = os.path.join(BASE_DIR, 'results')
os.makedirs(JSON_DATA_DIR, exist_ok=True)
JSON_USERS_PATH = os.path.join(BASE_DIR, 'users.json')
"""### main codes"""
# Function for showing the required page
def show_page(page_name, username):
if page_name == 'classifier':
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
elif page_name == 'archive':
archive_msg, archive_df = show_archive(username)
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), archive_msg, archive_df
elif page_name == 'login':
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
#Function for saving the classification results
def save_result(img: Image.Image, predicted_nature, predicted_class, predicted_probability, username):
# Security Checks
if img is None:
return "Error: no image uploaded!"
if predicted_nature is None or predicted_class == "":
return "Error: classify first!"
if predicted_class is None or predicted_class == "":
return "Error: classify first!"
if predicted_probability is None or predicted_probability == "":
return "Error: classify first!"
if username == 'user' or username == '':
return "Error: sign-in first"
now = datetime.now()
timestamp_file = now.strftime('%Y-%m-%d-%H-%M-%S')
timestamp_json = now.isoformat()
# Save image
img_path = os.path.join(IMG_DIR, username, f'{timestamp_file}.jpg')
os.makedirs(os.path.dirname(img_path), exist_ok=True)
img.save(img_path)
json_path = os.path.join(JSON_DATA_DIR, f'{username}.json')
# Read for existing JSON
try:
with open(json_path, "r") as f:
results = json.load(f)
except FileNotFoundError:
results = []
results.append({
'timestamp': timestamp_json,
'image_path': os.path.relpath(img_path, BASE_DIR),
'predicted_nature': predicted_nature,
'predicted_class': predicted_class,
'predicted_probability': float(predicted_probability)
})
with open(json_path, "w") as f:
json.dump(results, f, indent=2)
return gr.update(value="Results saved successfully!", visible=True)
# fucntion for loading the archive related to the user
def show_archive(username):
json_path = os.path.join(JSON_DATA_DIR, f'{username}.json')
if not os.path.exists(json_path):
return gr.update(value="Nessun record salvato.", visible=True), gr.update(visible=False)
with open(json_path, "r") as f:
archive_data = json.load(f)
if not archive_data:
return gr.update(value="Nessun record salvato.", visible=True), gr.update(visible=False)
rows = []
for row in archive_data:
rows.append([row["timestamp"],
row["predicted_nature"],
row["predicted_class"],
row["predicted_probability"],
row["image_path"]])
return gr.update(value="", visible=False), gr.update(value=rows, visible=True)
# Function for showing the selected image
def show_image(evt: gr.SelectData):
img_path = evt.row_value[3]
return gr.update(value=os.path.join(BASE_DIR, img_path), visible=True), gr.update(value=img_path), gr.update(
visible=True)
# Function for deleting an existing record from the archive files
def delete_record(table_data, img_path, username):
if img_path is None:
return gr.update(value=table_data)
if os.path.exists(os.path.join(BASE_DIR, img_path)):
os.remove(os.path.join(BASE_DIR, img_path))
json_path = os.path.join(JSON_DATA_DIR, f'{username}.json')
if os.path.exists(json_path):
with open(json_path, "r") as f:
results = json.load(f)
results = [r for r in results if r["image_path"] != img_path]
with open(json_path, "w") as f:
json.dump(results, f, indent=2)
rows = []
for row in results:
rows.append([row["timestamp"],
row["predicted_nature"],
row["predicted_class"],
row["predicted_probability"],
row["image_path"]])
return gr.update(value=rows, visible=True), gr.update(value=None, visible=False), gr.update(visible=False)
# Function for sign in
def signin(user, psw):
if not os.path.exists(JSON_USERS_PATH):
return (
gr.update(value='Password e/o Nome utente errato', visible=True), # login_msg
gr.update(value='user', visible=False), # username_sb
gr.update(visible=True), # login_pg
gr.update(visible=False), # archive_sb_btn
gr.update(visible=True), # sign_sb_btn
gr.update(visible=False), # delete_sb_btn
gr.update(visible=False), # save_btn
gr.update(visible=False) # classifier_pg
)
else:
path = JSON_USERS_PATH
with open(path, 'r') as f:
users = json.load(f)
for u in users:
if u['username'].lower() == user.lower() and u['password'] == psw:
return (
gr.update(value='Login effettuato', visible=True), # login_msg
gr.update(value=f"**{user.upper()}**", visible=True), # username_sb
gr.update(visible=False), # login_pg
gr.update(visible=True), # archive_sb_btn
gr.update(visible=False), # sign_sb_btn
gr.update(visible=True), # delete_sb_btn
gr.update(visible=True), # save_btn
gr.update(visible=True) # classifier_pg
)
return (
gr.update(value='Password e/o Nome utente errato', visible=True), # login_msg
gr.update(value='user', visible=False), # username_sb
gr.update(visible=True), # login_pg
gr.update(visible=False), # archive_sb_btn
gr.update(visible=True), # sign_sb_btn
gr.update(visible=False), # delete_sb_btn
gr.update(visible=False), # save_btn
gr.update(visible=False) # classifier_pg
)
# Function for sign up
def signup(user, psw):
try:
with open(JSON_USERS_PATH, "r") as f:
results = json.load(f)
except FileNotFoundError:
results = []
for u in results:
if u['username'].lower() == user.lower():
return (
gr.update(value='Utente già esistente', visible=True), # login_msg
gr.update(value='user', visible=False), # username_sb
gr.update(visible=True), # login_pg
gr.update(visible=False), # archive_sb_btn
gr.update(visible=True), # sign_sb_btn
gr.update(visible=False), # delete_sb_btn
gr.update(visible=False), # save_btn
gr.update(visible=False) # classifier_pg
)
if user == '' or psw == '':
return (
gr.update(value='Nome utente e/o password non validi', visible=True), # login_msg
gr.update(value='user', visible=False), # username_sb
gr.update(visible=True), # login_pg
gr.update(visible=False), # archive_sb_btn
gr.update(visible=True), # sign_sb_btn
gr.update(visible=False), # delete_sb_btn
gr.update(visible=False), # save_btn
gr.update(visible=False) # classifier_pg
)
results.append({
'username': user,
'password': psw
})
with open(JSON_USERS_PATH, "w") as f:
json.dump(results, f, indent=2)
return (
gr.update(value='Login effettuato', visible=True), # login_msg
gr.update(value=f"**{user.upper()}**", visible=True), # username_sb
gr.update(visible=False), # login_pg
gr.update(visible=True), # archive_sb_btn
gr.update(visible=False), # sign_sb_btn
gr.update(visible=True), # delete_sb_btn
gr.update(visible=True), # save_btn
gr.update(visible=True) # classifier_pg
)
# Function for deleting an existing account
def delete_account(user):
user = user.strip('*').lower()
with open(JSON_USERS_PATH, 'r') as file:
users = json.load(file)
users = [record for record in users if record['username'].lower() != user.lower()]
print(users)
with open(JSON_USERS_PATH, 'w') as file:
json.dump(users, file, indent=2)
return (
gr.update(visible=False), # username_sb
gr.update(visible=False), # login_pg
gr.update(visible=False), # archive_sb_btn
gr.update(visible=True), # sign_sb_btn
gr.update(visible=False), # delete_sb_btn
gr.update(visible=False), # save_btn
gr.update(visible=True) # classifier_pg
)
from PIL import Image
import gradio as gr
from datetime import datetime
import json
css = """
#container {min-height: 100vh;}
.sidebar {
background-color: #f0f0f0;
padding: 10px;
height: 100vh;
overflow-y: auto;
}
.content {padding: 20px; padding-bottom: 60px; overflow-y:auto}
.fixed_image img{
max-width: 224px;
height: 224px; /* altezza massima */
object-fit: contain; /* mantiene proporzioni */
}
"""
# UI
with gr.Blocks(css=css) as demo:
with gr.Row(elem_id='container'):
# sidebar
with gr.Column(scale=1, min_width=200, elem_classes='sidebar'):
username_sb = gr.Markdown('user', visible=False)
cls_sb_bt = gr.Button('Classifier', visible=True)
archive_sb_btn = gr.Button('Archive', visible=False)
sign_sb_btn = gr.Button('Sign-in/Sign-up', visible=True)
delete_sb_btn = gr.Button('Delete Account', visible=False)
# content
with gr.Column(scale=4):
with gr.Column(scale=4, min_width=400, elem_classes="content"):
# Classifier page
with gr.Group(visible=True) as classifier:
gr.Markdown('### Classifier')
with gr.Row():
uploader = gr.Image(label='Upload image', sources=['upload', 'webcam'], type='pil',
elem_classes='fixed_image')
with gr.Row():
output_nature = gr.Textbox(value=0, label="Nature", interactive=False)
output_diagnosis = gr.Textbox(value=0, label="Diagnosis", interactive=False)
output_probability = gr.Number(value="", label="Probability", interactive=False)
with gr.Row():
# pulsanti
cls_btn = gr.Button("Classify", visible=True)
save_btn = gr.Button('Save Results', visible=False)
save_status = gr.Textbox(label='Status', interactive=False, visible=False)
# events
cls_btn.click(
fn=predicted_diagnosis,
inputs=uploader,
outputs=[uploader, output_nature, output_diagnosis, output_probability]
)
save_btn.click(
fn=save_result,
inputs=[uploader, output_nature, output_diagnosis, output_probability, username_sb],
outputs=save_status
)
# Archive page
with gr.Group(visible=False) as archive:
gr.Markdown('### Archive')
with gr.Row():
archive_msg = gr.Markdown()
archive_df = gr.Dataframe(
headers=['Timestamp', 'Nature', 'Diagnosis', 'Probability', 'Image Path'],
datatype=['str', 'str', 'str', 'number', 'str'],
interactive=False,
visible=False
)
selected_image = gr.Image(label='Immagine selezionata.', visible=False, type='filepath',
interactive=False, elem_classes='fixed_image')
image_path = gr.Textbox(visible=False)
with gr.Row():
# Buttons
load_btn = gr.Button('Refresh Archive')
delete_btn = gr.Button('Delete Record', visible=False)
# Events
load_btn.click(fn=show_archive, inputs=[username_sb], outputs=[archive_msg, archive_df])
archive_df.select(
fn=show_image,
inputs=[],
outputs=[selected_image, image_path, delete_btn]
)
delete_btn.click(
fn=delete_record,
inputs=[archive_df, image_path, username_sb],
outputs=[archive_df, selected_image, delete_btn]
)
# Login page
with gr.Group(visible=False) as login:
gr.Markdown('### Login')
with gr.Row():
username_tbox = gr.Textbox(label='Username')
password_tbox = gr.Textbox(label='Password', type='password')
with gr.Row():
login_msg = gr.Textbox(label='Status', interactive=False, visible=False)
with gr.Row():
# Buttons
signin_btn = gr.Button('Sign-in')
signup_btn = gr.Button('Sign-up')
# Events
signin_btn.click(
fn=signin,
inputs=[username_tbox, password_tbox],
outputs=[login_msg, username_sb, login, archive_sb_btn, sign_sb_btn, delete_sb_btn, save_btn,
classifier]
)
signup_btn.click(
fn=signup,
inputs=[username_tbox, password_tbox],
outputs=[login_msg, username_sb, login, archive_sb_btn, sign_sb_btn, delete_sb_btn, save_btn,
classifier]
)
#Sidebar buttons
cls_sb_bt.click(fn=lambda username: show_page('classifier', username), inputs=[username_sb],
outputs=[classifier, archive, login])
archive_sb_btn.click(fn=lambda username: show_page('archive', username), inputs=[username_sb],
outputs=[classifier, archive, login, archive_msg, archive_df])
sign_sb_btn.click(fn=lambda username: show_page('login', username), inputs=[username_sb],
outputs=[classifier, archive, login])
delete_sb_btn.click(fn=delete_account, inputs=[username_sb],
outputs=[username_sb, login, archive_sb_btn, sign_sb_btn, delete_sb_btn, save_btn,
classifier])
if __name__ == '__main__':
demo.launch(debug=True)
|