Spaces:
Running
Running
File size: 49,667 Bytes
ec63fa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 |
#!/usr/bin/env python3
#
# This file is part of LatinPipe EvaLatin 24
# <https://github.com/ufal/evalatin2024-latinpipe>.
#
# Copyright 2024 Institute of Formal and Applied Linguistics, Faculty of
# Mathematics and Physics, Charles University in Prague, Czech Republic.
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
import argparse
import collections
import datetime
import difflib
import io
import json
import os
import pickle
import re
from typing import Self
os.environ.setdefault("KERAS_BACKEND", "torch")
import keras
import numpy as np
import torch
import transformers
import ufal.chu_liu_edmonds
import latinpipe_evalatin24_eval
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", default=32, type=int, help="Batch size.")
parser.add_argument("--deprel", default="full", choices=["full", "universal"], type=str, help="Deprel kind.")
parser.add_argument("--dev", default=[], nargs="+", type=str, help="Dev CoNLL-U files.")
parser.add_argument("--dropout", default=0.5, type=float, help="Dropout")
parser.add_argument("--embed_tags", default="", type=str, help="Tags to embed on input.")
parser.add_argument("--epochs", default=30, type=int, help="Number of epochs.")
parser.add_argument("--epochs_frozen", default=0, type=int, help="Number of epochs with frozen transformer.")
parser.add_argument("--exp", default=None, type=str, help="Experiment name.")
parser.add_argument("--label_smoothing", default=0.03, type=float, help="Label smoothing.")
parser.add_argument("--learning_rate", default=2e-5, type=float, help="Learning rate.")
parser.add_argument("--learning_rate_decay", default="cos", choices=["none", "cos"], type=str, help="Learning rate decay.")
parser.add_argument("--learning_rate_warmup", default=2_000, type=int, help="Number of warmup steps.")
parser.add_argument("--load", default=[], type=str, nargs="*", help="Path to load models from.")
parser.add_argument("--max_train_sentence_len", default=150, type=int, help="Max sentence subwords in training.")
parser.add_argument("--optimizer", default="adam", choices=["adam", "adafactor"], type=str, help="Optimizer.")
parser.add_argument("--parse", default=1, type=int, help="Parse.")
parser.add_argument("--parse_attention_dim", default=512, type=int, help="Parse attention dimension.")
parser.add_argument("--rnn_dim", default=512, type=int, help="RNN layers size.")
parser.add_argument("--rnn_layers", default=2, type=int, help="RNN layers.")
parser.add_argument("--rnn_type", default="LSTMTorch", choices=["LSTM", "GRU", "LSTMTorch", "GRUTorch"], help="RNN type.")
parser.add_argument("--save_checkpoint", default=False, action="store_true", help="Save checkpoint.")
parser.add_argument("--seed", default=42, type=int, help="Initial random seed.")
parser.add_argument("--steps_per_epoch", default=1_000, type=int, help="Steps per epoch.")
parser.add_argument("--single_root", default=1, type=int, help="Single root allowed only.")
parser.add_argument("--subword_combination", default="first", choices=["first", "last", "sum", "concat"], type=str, help="Subword combination.")
parser.add_argument("--tags", default="UPOS,LEMMAS,FEATS", type=str, help="Tags to predict.")
parser.add_argument("--task_hidden_layer", default=2_048, type=int, help="Task hidden layer size.")
parser.add_argument("--test", default=[], nargs="+", type=str, help="Test CoNLL-U files.")
parser.add_argument("--train", default=[], nargs="+", type=str, help="Train CoNLL-U files.")
parser.add_argument("--train_sampling_exponent", default=0.5, type=float, help="Train sampling exponent.")
parser.add_argument("--transformers", nargs="+", type=str, help="Transformers models to use.")
parser.add_argument("--treebank_ids", default=False, action="store_true", help="Include treebank IDs on input.")
parser.add_argument("--threads", default=4, type=int, help="Maximum number of threads to use.")
parser.add_argument("--verbose", default=2, type=int, help="Verbosity")
parser.add_argument("--wandb", default=False, action="store_true", help="Log in WandB.")
parser.add_argument("--word_masking", default=None, type=float, help="Word masking")
os.environ["PYTORCH_MPS_HIGH_WATERMARK_RATIO"] = "0.0"
class UDDataset:
FORMS, LEMMAS, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC, FACTORS = range(10)
FACTORS_MAP = {"FORMS": FORMS, "LEMMAS": LEMMAS, "UPOS": UPOS, "XPOS": XPOS, "FEATS": FEATS,
"HEAD": HEAD, "DEPREL": DEPREL, "DEPS": DEPS, "MISC": MISC}
RE_EXTRAS = re.compile(r"^#|^\d+-|^\d+\.")
class Factor:
def __init__(self, train_factor: Self = None):
self.words_map = train_factor.words_map if train_factor else {"<unk>": 0}
self.words = train_factor.words if train_factor else ["<unk>"]
self.word_ids = []
self.strings = []
def __init__(self, path: str, args: argparse.Namespace, treebank_id: int|None = None, train_dataset: Self = None, text: str|None = None):
self.path = path
# Create factors and other variables
self.factors = []
for f in range(self.FACTORS):
self.factors.append(self.Factor(train_dataset.factors[f] if train_dataset is not None else None))
self._extras = []
lemma_transforms = collections.Counter()
# Load the CoNLL-U file
with open(path, "r", encoding="utf-8") if text is None else io.StringIO(text) as file:
in_sentence = False
for line in file:
line = line.rstrip("\r\n")
if line:
if self.RE_EXTRAS.match(line):
if in_sentence:
while len(self._extras) < len(self.factors[0].strings): self._extras.append([])
while len(self._extras[-1]) <= len(self.factors[0].strings[-1]):
self._extras[-1].append("")
else:
while len(self._extras) <= len(self.factors[0].strings): self._extras.append([])
if not len(self._extras[-1]): self._extras[-1].append("")
self._extras[-1][-1] += ("\n" if self._extras[-1][-1] else "") + line
continue
columns = line.split("\t")[1:]
for f in range(self.FACTORS):
factor = self.factors[f]
if not in_sentence:
factor.word_ids.append([])
factor.strings.append([])
word = columns[f]
factor.strings[-1].append(word)
# Add word to word_ids
if f == self.FORMS:
# For formw, we do not remap strings into IDs because the tokenizer will create the subwords IDs for us.
factor.word_ids[-1].append(0)
elif f == self.HEAD:
factor.word_ids[-1].append(int(word) if word != "_" else -1)
elif f == self.LEMMAS:
factor.word_ids[-1].append(0)
lemma_transforms[(columns[self.FORMS], word)] += 1
else:
if f == self.DEPREL and args.deprel == "universal":
word = word.split(":")[0]
if word not in factor.words_map:
if train_dataset is not None:
word = "<unk>"
else:
factor.words_map[word] = len(factor.words)
factor.words.append(word)
factor.word_ids[-1].append(factor.words_map[word])
in_sentence = True
else:
in_sentence = False
for factor in self.factors:
if len(factor.word_ids): factor.word_ids[-1] = np.array(factor.word_ids[-1], np.int32)
# Also load the file for evaluation if it is not a training dataset
if train_dataset is not None:
file.seek(0, io.SEEK_SET)
self.conllu_for_eval = latinpipe_evalatin24_eval.load_conllu(file)
# Construct lemma rules
self.finalize_lemma_rules(lemma_transforms, create_rules=train_dataset is None)
# The dataset consists of a single treebank
self.treebank_ranges = [(0, len(self))]
self.treebank_ids = [treebank_id]
# Create an empty tokenize cache
self._tokenizer_cache = {}
def __len__(self):
return len(self.factors[0].strings)
def save_mappings(self, path: str) -> None:
mappings = UDDataset.__new__(UDDataset)
mappings.factors = []
for factor in self.factors:
mappings.factors.append(UDDataset.Factor.__new__(UDDataset.Factor))
mappings.factors[-1].words = factor.words
with open(path, "wb") as mappings_file:
pickle.dump(mappings, mappings_file, protocol=4)
@staticmethod
def from_mappings(path: str) -> Self:
with open(path, "rb") as mappings_file:
mappings = pickle.load(mappings_file)
for factor in mappings.factors:
factor.words_map = {word: i for i, word in enumerate(factor.words)}
return mappings
@staticmethod
def create_lemma_rule(form: str, lemma: str) -> str:
diff = difflib.SequenceMatcher(None, form.lower(), lemma.lower(), False)
rule, in_prefix = [], True
for tag, i1, i2, j1, j2 in diff.get_opcodes():
if i2 > len(form) // 3 and in_prefix:
in_prefix = False
if tag == "equal":
mode, jd = "L" if lemma[j2 - 1].islower() else "U", j2 - 1
while jd > j1 and lemma[jd - 1].islower() == lemma[j2 - 1].islower(): jd -= 1
rule.extend(["l" if lemma[j].islower() else "u" for j in range(j1, jd)])
rule.extend(mode * (len(form) - i2 + 1))
if tag in ["replace", "delete"]:
rule.extend("D" * (len(form) - i2 + 1))
if tag in ["replace", "insert"]:
rule.extend("i" + lemma[j] for j in range(j1, j2))
else:
if tag == "equal":
rule.extend(["l" if lemma[j].islower() else "u" for j in range(j1, j2)])
if tag in ["replace", "delete"]:
rule.extend("d" * (i2 - i1))
if tag in ["replace", "insert"]:
rule.extend("i" + lemma[j] for j in range(j1, j2))
return "".join(rule)
@staticmethod
def apply_lemma_rule(rule: str, form: str) -> str:
def error():
# print("Error: cannot decode lemma rule '{}' with form '{}', copying input.".format(rule, form))
return form
if rule == "<unk>":
return form
lemma, r, i = [], 0, 0
while r < len(rule):
if rule[r] == "i":
if r + 1 == len(rule):
return error()
r += 1
lemma.append(rule[r])
elif rule[r] == "d":
i += 1
elif rule[r] in ("l", "u"):
if i == len(form):
return error()
lemma.append(form[i].lower() if rule[r] == "l" else form[i].upper())
i += 1
elif rule[r] in ("L", "U", "D"):
i2 = len(form)
while r + 1 < len(rule) and rule[r + 1] == rule[r]:
r += 1
i2 -= 1
if i2 < i:
return error()
if rule[r] == "L":
lemma.extend(form[i:i2].lower())
if rule[r] == "U":
lemma.extend(form[i:i2].upper())
i = i2
else:
return error()
r += 1
if i != len(form) or not lemma:
return error()
return "".join(lemma)
def finalize_lemma_rules(self, lemma_transforms: collections.Counter, create_rules: bool) -> None:
forms, lemmas = self.factors[self.FORMS], self.factors[self.LEMMAS]
# Generate all rules
rules_merged, rules_all = collections.Counter(), {}
for form, lemma in lemma_transforms:
rule = self.create_lemma_rule(form, lemma)
rules_all[(form, lemma)] = rule
if create_rules:
rules_merged[rule] += 1
# Keep the rules that are used more than once
if create_rules:
for rule, count in rules_merged.items():
if count > 1:
lemmas.words_map[rule] = len(lemmas.words)
lemmas.words.append(rule)
# Store the rules in the dataset
for i in range(len(forms.strings)):
for j in range(len(forms.strings[i])):
rule = rules_all.get((forms.strings[i][j], lemmas.strings[i][j]))
lemmas.word_ids[i][j] = lemmas.words_map.get(rule, 0)
def tokenize(self, tokenizer: transformers.PreTrainedTokenizer) -> tuple[list[np.ndarray], list[np.ndarray]]:
if tokenizer not in self._tokenizer_cache:
assert tokenizer.cls_token_id is not None, "The tokenizer must have a CLS token"
tokenized = tokenizer(self.factors[0].strings, add_special_tokens=True, is_split_into_words=True)
tokens, word_indices = [], []
for i, sentence in enumerate(tokenized.input_ids):
offset = 0
if not len(sentence) or sentence[0] != tokenizer.cls_token_id:
# Handle tokenizers that do not add CLS tokens, which we need for prediction
# of the root nodes during parsing. For such tokenizers, we added the CLS token
# manually already, but the build_inputs_with_special_tokens() might not have added it.
sentence = [tokenizer.cls_token_id] + sentence
offset = 1
treebank_id = None
for id_, (start, end) in zip(self.treebank_ids, self.treebank_ranges):
if start <= i < end:
treebank_id = id_
if treebank_id is not None:
sentence.insert(1, tokenizer.additional_special_tokens_ids[treebank_id])
offset += 1
tokens.append(np.array(sentence, dtype=np.int32))
word_indices.append([(0, 0)])
for j in range(len(self.factors[0].strings[i])):
span = tokenized.word_to_tokens(i, j)
if (span == None):
print("-x-x-x-", i, j)
try:
word_indices[-1].append((offset + span.start, offset + span.end - 1))
except:
#abracadabra = 0
print(treebank_id)
input("??")
word_indices[-1] = np.array(word_indices[-1], dtype=np.int32)
self._tokenizer_cache[tokenizer] = (tokens, word_indices)
return self._tokenizer_cache[tokenizer]
def write_sentence(self, output: io.TextIOBase, index: int, overrides: list = None) -> None:
assert index < len(self.factors[0].strings), "Sentence index out of range"
for i in range(len(self.factors[0].strings[index]) + 1):
# Start by writing extras
if index < len(self._extras) and i < len(self._extras[index]) and self._extras[index][i]:
print(self._extras[index][i], file=output)
if i == len(self.factors[0].strings[index]): break
fields = []
fields.append(str(i + 1))
for f in range(self.FACTORS):
factor = self.factors[f]
field = factor.strings[index][i]
# Overrides
if overrides is not None and f < len(overrides) and overrides[f] is not None:
override = overrides[f][i]
if f == self.HEAD:
field = str(override) if override >= 0 else "_"
else:
field = factor.words[override]
if f == self.LEMMAS:
field = self.apply_lemma_rule(field, self.factors[self.FORMS].strings[index][i])
fields.append(field)
print("\t".join(fields), file=output)
print(file=output)
class UDDatasetMerged(UDDataset):
def __init__(self, datasets: list[UDDataset]):
# Create factors and other variables
self.factors = []
for f in range(self.FACTORS):
self.factors.append(self.Factor(None))
lemma_transforms = collections.Counter()
self.treebank_ranges, self.treebank_ids = [], []
for dataset in datasets:
assert len(dataset.treebank_ranges) == len(dataset.treebank_ids) == 1
self.treebank_ranges.append((len(self), len(self) + len(dataset)))
self.treebank_ids.append(dataset.treebank_ids[0])
for s in range(len(dataset)):
for f in range(self.FACTORS):
factor = self.factors[f]
factor.strings.append(dataset.factors[f].strings[s])
factor.word_ids.append([])
for i, word in enumerate(dataset.factors[f].strings[s]):
if f == self.FORMS:
# We do not remap strings into IDs because the tokenizer will create the subwords IDs for us.
factor.word_ids[-1].append(0)
if f == self.HEAD:
factor.word_ids[-1].append(word)
elif f == self.LEMMAS:
factor.word_ids[-1].append(0)
lemma_transforms[(dataset.factors[self.FORMS].strings[s][i], word)] += 1
else:
if word not in factor.words_map:
factor.words_map[word] = len(factor.words)
factor.words.append(word)
factor.word_ids[-1].append(factor.words_map[word])
self.factors[f].word_ids[-1] = np.array(self.factors[f].word_ids[-1], np.int32)
# Construct lemma rules
self.finalize_lemma_rules(lemma_transforms, create_rules=True)
# Create an empty tokenize cache
self._tokenizer_cache = {}
class TorchUDDataset(torch.utils.data.Dataset):
def __init__(self, ud_dataset: UDDataset, tokenizers: list[transformers.PreTrainedTokenizer], args: argparse.Namespace, training: bool):
self.ud_dataset = ud_dataset
self.training = training
self._outputs_to_input = [args.tags.index(tag) for tag in args.embed_tags]
self._inputs = [ud_dataset.tokenize(tokenizer) for tokenizer in tokenizers]
self._outputs = [ud_dataset.factors[tag].word_ids for tag in args.tags]
if args.parse:
self._outputs.append(ud_dataset.factors[ud_dataset.HEAD].word_ids)
self._outputs.append(ud_dataset.factors[ud_dataset.DEPREL].word_ids)
# Trim the sentences if needed
if training and args.max_train_sentence_len:
trimmed_sentences = 0
for index in range(len(self)): # Over sentences
max_words, need_trimming = None, False
for tokens, word_indices in self._inputs: # Over transformers
if max_words is None:
max_words = len(word_indices[index])
while word_indices[index][max_words - 1, 1] >= args.max_train_sentence_len:
max_words -= 1
need_trimming = True
assert max_words >= 2, "Sentence too short after trimming"
if need_trimming:
for tokens, word_indices in self._inputs: # Over transformers
tokens[index] = tokens[index][:word_indices[index][max_words - 1, 1] + 1]
word_indices[index] = word_indices[index][:max_words]
for output in self._outputs:
output[index] = output[index][:max_words - 1] # No CLS tokens in outputs
if args.parse:
self._outputs[-2][index] = np.array([head if head < max_words else -1 for head in self._outputs[-2][index]], np.int32)
trimmed_sentences += 1
if trimmed_sentences:
print("Trimmed {} out of {} sentences".format(trimmed_sentences, len(self)))
def __len__(self):
return len(self.ud_dataset)
def __getitem__(self, index: int):
inputs = []
for tokens, word_indices in self._inputs:
inputs.append(torch.from_numpy(tokens[index]))
inputs.append(torch.from_numpy(word_indices[index]))
for i in self._outputs_to_input:
inputs.append(torch.from_numpy(self._outputs[i][index]))
outputs = []
for output in self._outputs:
outputs.append(torch.from_numpy(output[index]))
return inputs, outputs
class TorchUDDataLoader(torch.utils.data.DataLoader):
class MergedDatasetSampler(torch.utils.data.Sampler):
def __init__(self, ud_dataset: UDDataset, args: argparse.Namespace):
self._treebank_ranges = ud_dataset.treebank_ranges
self._sentences_per_epoch = args.steps_per_epoch * args.batch_size
self._generator = torch.Generator().manual_seed(args.seed)
treebank_weights = np.array([r[1] - r[0] for r in self._treebank_ranges], np.float32)
treebank_weights = treebank_weights ** args.train_sampling_exponent
treebank_weights /= np.sum(treebank_weights)
self._treebank_sizes = np.array(treebank_weights * self._sentences_per_epoch, np.int32)
self._treebank_sizes[:self._sentences_per_epoch - np.sum(self._treebank_sizes)] += 1
self._treebank_indices = [[] for _ in self._treebank_ranges]
def __len__(self):
return self._sentences_per_epoch
def __iter__(self):
indices = []
for i in range(len(self._treebank_ranges)):
required = self._treebank_sizes[i]
while required:
if not len(self._treebank_indices[i]):
self._treebank_indices[i] = self._treebank_ranges[i][0] + torch.randperm(
self._treebank_ranges[i][1] - self._treebank_ranges[i][0], generator=self._generator)
indices.append(self._treebank_indices[i][:required])
required -= min(len(self._treebank_indices[i]), required)
indices = torch.concatenate(indices, axis=0)
return iter(indices[torch.randperm(len(indices), generator=self._generator)])
def _collate_fn(self, batch):
inputs, outputs = zip(*batch)
batch_inputs = []
for sequences in zip(*inputs):
batch_inputs.append(torch.nn.utils.rnn.pad_sequence(sequences, batch_first=True, padding_value=-1))
batch_outputs = []
for output in zip(*outputs):
batch_outputs.append(torch.nn.utils.rnn.pad_sequence(output, batch_first=True, padding_value=-1))
batch_weights = [batch_output != -1 for batch_output in batch_outputs]
return tuple(batch_inputs), tuple(batch_outputs), tuple(batch_weights)
def __init__(self, dataset: TorchUDDataset, args: argparse.Namespace, **kwargs):
sampler = None
if dataset.training:
if len(dataset.ud_dataset.treebank_ranges) == 1:
sampler = torch.utils.data.RandomSampler(dataset, generator=torch.Generator().manual_seed(args.seed))
else:
assert args.steps_per_epoch is not None, "Steps per epoch must be specified when training on multiple treebanks"
sampler = self.MergedDatasetSampler(dataset.ud_dataset, args)
super().__init__(dataset, batch_size=args.batch_size, sampler=sampler, collate_fn=self._collate_fn, **kwargs)
class LatinPipeModel(keras.Model):
class HFTransformerLayer(keras.layers.Layer):
def __init__(self, transformer: transformers.PreTrainedModel, subword_combination: str, word_masking: float = None, mask_token_id: int = None, **kwargs):
super().__init__(**kwargs)
self._transformer = transformer
self._subword_combination = subword_combination
self._word_masking = word_masking
self._mask_token_id = mask_token_id
def call(self, inputs, word_indices, training=None):
if training and self._word_masking:
mask = keras.ops.cast(keras.random.uniform(keras.ops.shape(inputs), dtype="float32") < self._word_masking, inputs.dtype)
inputs = (1 - mask) * inputs + mask * self._mask_token_id
if (training or False) != self._transformer.training:
self._transformer.train(training or False)
if self._subword_combination != "last":
first_subwords = keras.ops.take_along_axis(
self._transformer(keras.ops.maximum(inputs, 0), attention_mask=inputs > -1).last_hidden_state,
keras.ops.expand_dims(keras.ops.maximum(word_indices[..., 0], 0), axis=-1),
axis=1,
)
if self._subword_combination != "first":
last_subwords = keras.ops.take_along_axis(
self._transformer(keras.ops.maximum(inputs, 0), attention_mask=inputs > -1).last_hidden_state,
keras.ops.expand_dims(keras.ops.maximum(word_indices[..., 1], 0), axis=-1),
axis=1,
)
if self._subword_combination == "first":
return first_subwords
elif self._subword_combination == "last":
return last_subwords
elif self._subword_combination == "sum":
return first_subwords + last_subwords
elif self._subword_combination == "concat":
return keras.ops.concatenate([first_subwords, last_subwords], axis=-1)
else:
raise ValueError("Unknown subword combination '{}'".format(self._subword_combination))
class LSTMTorch(keras.layers.Layer):
def __init__(self, units: int, **kwargs):
super().__init__(**kwargs)
self._units = units
def build(self, input_shape):
self._lstm = torch.nn.LSTM(input_shape[-1], self._units, batch_first=True, bidirectional=True)
def call(self, inputs, lengths):
packed_result, _ = self._lstm.module(torch.nn.utils.rnn.pack_padded_sequence(inputs, lengths.cpu(), batch_first=True, enforce_sorted=False))
unpacked_result = torch.nn.utils.rnn.unpack_sequence(packed_result)
return torch.nn.utils.rnn.pad_sequence(unpacked_result, batch_first=True, padding_value=0)
class GRUTorch(keras.layers.Layer):
def __init__(self, units: int, **kwargs):
super().__init__(**kwargs)
self._units = units
def build(self, input_shape):
self._gru = torch.nn.GRU(input_shape[-1], self._units, batch_first=True, bidirectional=True)
def call(self, inputs, lengths):
packed_result, _ = self._gru(torch.nn.utils.rnn.pack_padded_sequence(inputs, lengths.cpu(), batch_first=True, enforce_sorted=False))
unpacked_result = torch.nn.utils.rnn.unpack_sequence(packed_result)
return torch.nn.utils.rnn.pad_sequence(unpacked_result, batch_first=True, padding_value=0)
class ParsingHead(keras.layers.Layer):
def __init__(self, num_deprels: int, task_hidden_layer: int, parse_attention_dim: int, dropout: float, **kwargs):
super().__init__(**kwargs)
self._head_queries_hidden = keras.layers.Dense(task_hidden_layer, activation="relu")
self._head_queries_output = keras.layers.Dense(parse_attention_dim)
self._head_keys_hidden = keras.layers.Dense(task_hidden_layer, activation="relu")
self._head_keys_output = keras.layers.Dense(parse_attention_dim)
self._deprel_hidden = keras.layers.Dense(task_hidden_layer, activation="relu")
self._deprel_output = keras.layers.Dense(num_deprels)
self._dropout = keras.layers.Dropout(dropout)
def call(self, embeddings, embeddings_wo_root, embeddings_mask):
head_queries = self._head_queries_output(self._dropout(self._head_queries_hidden(embeddings_wo_root)))
head_keys = self._head_keys_output(self._dropout(self._head_keys_hidden(embeddings)))
head_scores = keras.ops.matmul(head_queries, keras.ops.transpose(head_keys, axes=[0, 2, 1])) / keras.ops.sqrt(head_queries.shape[-1])
head_scores_mask = keras.ops.cast(keras.ops.expand_dims(embeddings_mask, axis=1), head_scores.dtype)
head_scores = head_scores * head_scores_mask - 1e9 * (1 - head_scores_mask)
predicted_heads = keras.ops.argmax(head_scores, axis=-1)
predicted_head_embeddings = keras.ops.take_along_axis(embeddings, keras.ops.expand_dims(predicted_heads, axis=-1), axis=1)
deprel_hidden = keras.ops.concatenate([embeddings_wo_root, predicted_head_embeddings], axis=-1)
deprel_scores = self._deprel_output(self._dropout(self._deprel_hidden(deprel_hidden)))
return head_scores, deprel_scores
class SparseCategoricalCrossentropyWithLabelSmoothing(keras.losses.Loss):
def __init__(self, from_logits: bool, label_smoothing: float, **kwargs):
super().__init__(**kwargs)
self._from_logits = from_logits
self._label_smoothing = label_smoothing
def call(self, y_true, y_pred):
y_gold = keras.ops.one_hot(keras.ops.maximum(y_true, 0), y_pred.shape[-1])
if self._label_smoothing:
y_pred_mask = keras.ops.cast(y_pred > -1e9, y_pred.dtype)
y_gold = y_gold * (1 - self._label_smoothing) + y_pred_mask / keras.ops.sum(y_pred_mask, axis=-1, keepdims=True) * self._label_smoothing
return keras.losses.categorical_crossentropy(y_gold, y_pred, from_logits=self._from_logits)
def __init__(self, dataset: UDDataset, args: argparse.Namespace):
self._dataset = dataset
self._args = args
# Create the transformer models
self._tokenizers, self._transformers = [], []
for name in args.transformers:
self._tokenizers.append(transformers.AutoTokenizer.from_pretrained(name, add_prefix_space=True))
transformer, transformer_opts = transformers.AutoModel, {}
if "mt5" in name.lower():
transformer = transformers.MT5EncoderModel
if name.endswith(("LaTa", "PhilTa")):
transformer = transformers.T5EncoderModel
if name.endswith(("LaBerta", "PhilBerta")):
transformer_opts["add_pooling_layer"] = False
if args.load:
transformer = transformer.from_config(transformers.AutoConfig.from_pretrained(name), **transformer_opts)
else:
transformer = transformer.from_pretrained(name, **transformer_opts)
# Create additional tokens
additional_tokens = {}
if args.treebank_ids:
additional_tokens["additional_special_tokens"] = ["[TREEBANK_ID_{}]".format(i) for i in range(len(dataset.treebank_ids))]
if self._tokenizers[-1].cls_token_id is None: # Generate CLS token if not present (for representing sentence root in parsing).
additional_tokens["cls_token"] = "[CLS]"
if additional_tokens:
self._tokenizers[-1].add_special_tokens(additional_tokens)
transformer.resize_token_embeddings(len(self._tokenizers[-1]))
if args.treebank_ids:
assert len(self._tokenizers[-1].additional_special_tokens) == len(dataset.treebank_ids)
self._transformers.append(self.HFTransformerLayer(transformer, args.subword_combination, args.word_masking, self._tokenizers[-1].mask_token_id))
# Create the network
inputs = []
for _ in args.transformers:
inputs.extend([keras.layers.Input(shape=[None], dtype="int32"), keras.layers.Input(shape=[None, 2], dtype="int32")])
for _ in args.embed_tags:
inputs.append(keras.layers.Input(shape=[None], dtype="int32"))
# Run the transformer models
embeddings = []
for tokens, word_indices, transformer in zip(inputs[::2], inputs[1::2], self._transformers):
embeddings.append(transformer(tokens, word_indices))
embeddings = keras.layers.Concatenate(axis=-1)(embeddings)
embeddings = keras.layers.Dropout(args.dropout)(embeddings)
# Heads for the tagging tasks
outputs = []
for tag in args.tags:
hidden = keras.layers.Dense(args.task_hidden_layer, activation="relu")(embeddings[:, 1:])
hidden = keras.layers.Dropout(args.dropout)(hidden)
outputs.append(keras.layers.Dense(len(dataset.factors[tag].words))(hidden))
# Head for parsing
if args.parse:
if args.embed_tags:
all_embeddings = [embeddings]
for factor, input_tags in zip(args.embed_tags, inputs[-len(args.embed_tags):]):
embedding_layer = keras.layers.Embedding(len(dataset.factors[factor].words) + 1, 256)
all_embeddings.append(keras.layers.Dropout(args.dropout)(embedding_layer(keras.ops.pad(input_tags + 1, [(0, 0), (1, 0)]))))
embeddings = keras.ops.concatenate(all_embeddings, axis=-1)
for i in range(args.rnn_layers):
if args.rnn_type in ["LSTM", "GRU"]:
hidden = keras.layers.Bidirectional(getattr(keras.layers, args.rnn_type)(args.rnn_dim, return_sequences=True))(embeddings, mask=inputs[1][..., 0] > -1)
elif args.rnn_type in ["LSTMTorch", "GRUTorch"]:
hidden = getattr(self, args.rnn_type)(args.rnn_dim)(embeddings, keras.ops.sum(inputs[1][..., 0] > -1, axis=-1))
hidden = keras.layers.Dropout(args.dropout)(hidden)
embeddings = hidden + (embeddings if i else 0)
outputs.extend(self.ParsingHead(
len(dataset.factors[dataset.DEPREL].words), args.task_hidden_layer, args.parse_attention_dim, args.dropout,
)(embeddings, embeddings[:, 1:], inputs[1][..., 0] > -1))
super().__init__(inputs=inputs, outputs=outputs)
if args.load:
self.load_weights(args.load[0])
def compile(self, epoch_batches: int, frozen: bool):
args = self._args
for transformer in self._transformers:
transformer.trainable = not frozen
if frozen:
schedule = 1e-3
else:
schedule = keras.optimizers.schedules.CosineDecay(
0. if args.learning_rate_warmup else args.learning_rate,
args.epochs * epoch_batches - args.learning_rate_warmup,
alpha=0.0 if args.learning_rate_decay != "none" else 1.0,
warmup_target=args.learning_rate if args.learning_rate_warmup else None,
warmup_steps=args.learning_rate_warmup,
)
if args.optimizer == "adam":
optimizer = keras.optimizers.Adam(schedule)
elif args.optimizer == "adafactor":
optimizer = keras.optimizers.Adafactor(schedule)
else:
raise ValueError("Unknown optimizer '{}'".format(args.optimizer))
super().compile(
optimizer=optimizer,
loss=self.SparseCategoricalCrossentropyWithLabelSmoothing(from_logits=True, label_smoothing=args.label_smoothing),
)
@property
def tokenizers(self) -> list[transformers.PreTrainedTokenizer]:
return self._tokenizers
def predict(self, dataloader: TorchUDDataLoader, save_as: str|None = None, args_override: argparse.Namespace|None = None) -> str:
ud_dataset = dataloader.dataset.ud_dataset
args = self._args if args_override is None else args_override
conllu, sentence = io.StringIO(), 0
for batch_inputs, _, _ in dataloader:
predictions = self.predict_on_batch(batch_inputs)
for b in range(len(batch_inputs[0])):
sentence_len = len(ud_dataset.factors[ud_dataset.FORMS].strings[sentence])
overrides = [None] * ud_dataset.FACTORS
for tag, prediction in zip(args.tags, predictions):
overrides[tag] = np.argmax(prediction[b, :sentence_len], axis=-1)
if args.parse:
heads, deprels = predictions[-2:]
padded_heads = np.zeros([sentence_len + 1, sentence_len + 1], dtype=np.float64)
padded_heads[1:] = heads[b, :sentence_len, :sentence_len + 1]
padded_heads[1:] -= np.max(padded_heads[1:], axis=-1, keepdims=True)
padded_heads[1:] -= np.log(np.sum(np.exp(padded_heads[1:]), axis=-1, keepdims=True))
if args.single_root:
selected_root = 1 + np.argmax(padded_heads[1:, 0])
padded_heads[:, 0] = np.nan
padded_heads[selected_root, 0] = 0
chosen_heads, _ = ufal.chu_liu_edmonds.chu_liu_edmonds(padded_heads)
overrides[ud_dataset.HEAD] = chosen_heads[1:]
overrides[ud_dataset.DEPREL] = np.argmax(deprels[b, :sentence_len], axis=-1)
ud_dataset.write_sentence(conllu, sentence, overrides)
sentence += 1
conllu = conllu.getvalue()
if save_as is not None:
os.makedirs(os.path.dirname(save_as), exist_ok=True)
with open(save_as, "w", encoding="utf-8") as conllu_file:
conllu_file.write(conllu)
return conllu
def evaluate(self, dataloader: TorchUDDataLoader, save_as: str|None = None, args_override: argparse.Namespace|None = None) -> tuple[str, dict[str, float]]:
conllu = self.predict(dataloader, save_as=save_as, args_override=args_override)
evaluation = latinpipe_evalatin24_eval.evaluate(dataloader.dataset.ud_dataset.conllu_for_eval, latinpipe_evalatin24_eval.load_conllu(io.StringIO(conllu)))
if save_as is not None:
os.makedirs(os.path.dirname(save_as), exist_ok=True)
with open(save_as + ".eval", "w", encoding="utf-8") as eval_file:
for metric, score in evaluation.items():
print("{}: {:.2f}%".format(metric, 100 * score.f1), file=eval_file)
return conllu, evaluation
class LatinPipeModelEnsemble:
def __init__(self, latinpipe_model: LatinPipeModel, args: argparse.Namespace):
self._latinpipe_model = latinpipe_model
self._args = args
def predict(self, dataloader: TorchUDDataLoader, save_as: str|None = None) -> str:
def log_softmax(logits):
logits -= np.max(logits, axis=-1, keepdims=True)
logits -= np.log(np.sum(np.exp(logits), axis=-1, keepdims=True))
return logits
ud_dataset = dataloader.dataset.ud_dataset
# First compute all predictions
overrides = [[0] * len(ud_dataset) if tag in self._args.tags + ([ud_dataset.HEAD, ud_dataset.DEPREL] if self._args.parse else []) else None
for tag in range(ud_dataset.FACTORS)]
for path in self._args.load:
self._latinpipe_model.load_weights(path)
sentence = 0
for batch_inputs, _, _ in dataloader:
predictions = self._latinpipe_model.predict_on_batch(batch_inputs)
for b in range(len(batch_inputs[0])):
sentence_len = len(ud_dataset.factors[ud_dataset.FORMS].strings[sentence])
for tag, prediction in zip(self._args.tags, predictions):
overrides[tag][sentence] += log_softmax(prediction[b, :sentence_len])
if self._args.parse:
overrides[ud_dataset.HEAD][sentence] += log_softmax(predictions[-2][b, :sentence_len, :sentence_len + 1])
overrides[ud_dataset.DEPREL][sentence] += log_softmax(predictions[-1][b, :sentence_len])
sentence += 1
# Predict the most likely class and generate CoNLL-U output
conllu = io.StringIO()
for sentence in range(len(ud_dataset)):
sentence_overrides = [None] * ud_dataset.FACTORS
for tag in self._args.tags:
sentence_overrides[tag] = np.argmax(overrides[tag][sentence], axis=-1)
if self._args.parse:
padded_heads = np.pad(overrides[ud_dataset.HEAD][sentence], [(1, 0), (0, 0)]).astype(np.float64)
if self._args.single_root:
selected_root = 1 + np.argmax(padded_heads[1:, 0])
padded_heads[:, 0] = np.nan
padded_heads[selected_root, 0] = 0
chosen_heads, _ = ufal.chu_liu_edmonds.chu_liu_edmonds(padded_heads)
sentence_overrides[ud_dataset.HEAD] = chosen_heads[1:]
sentence_overrides[ud_dataset.DEPREL] = np.argmax(overrides[ud_dataset.DEPREL][sentence], axis=-1)
ud_dataset.write_sentence(conllu, sentence, sentence_overrides)
conllu = conllu.getvalue()
if save_as is not None:
os.makedirs(os.path.dirname(save_as), exist_ok=True)
with open(save_as, "w", encoding="utf-8") as conllu_file:
conllu_file.write(conllu)
return conllu
def evaluate(self, dataloader: TorchUDDataLoader, save_as: str|None = None) -> tuple[str, dict[str, float]]:
return LatinPipeModel.evaluate(self, dataloader, save_as=save_as)
def main(params: list[str] | None = None) -> None:
args = parser.parse_args(params)
# If supplied, load configuration from a trained model
if args.load:
with open(os.path.join(os.path.dirname(args.load[0]), "options.json"), mode="r") as options_file:
args = argparse.Namespace(**{k: v for k, v in json.load(options_file).items() if k not in [
"dev", "exp", "load", "test", "threads", "verbose"]})
args = parser.parse_args(params, namespace=args)
else:
assert args.train, "Either --load or --train must be set."
assert args.transformers, "At least one transformer must be specified."
# Post-process arguments
args.embed_tags = [UDDataset.FACTORS_MAP[tag] for tag in args.embed_tags.split(",") if tag]
args.tags = [UDDataset.FACTORS_MAP[tag] for tag in args.tags.split(",") if tag]
args.script = os.path.basename(__file__)
# Create logdir
args.logdir = os.path.join("logs", "{}{}-{}-{}-s{}".format(
args.exp + "-" if args.exp else "",
os.path.splitext(os.path.basename(globals().get("__file__", "notebook")))[0],
os.environ.get("SLURM_JOB_ID", ""),
datetime.datetime.now().strftime("%y%m%d_%H%M%S"),
args.seed,
# ",".join(("{}={}".format(
# re.sub("(.)[^_]*_?", r"\1", k),
# ",".join(re.sub(r"^.*/", "", str(x)) for x in ((v if len(v) <= 1 else [v[0], "..."]) if isinstance(v, list) else [v])),
# ) for k, v in sorted(vars(args).items()) if k not in ["dev", "exp", "load", "test", "threads", "verbose"]))
))
print(json.dumps(vars(args), sort_keys=True, ensure_ascii=False, indent=2))
os.makedirs(args.logdir, exist_ok=True)
with open(os.path.join(args.logdir, "options.json"), mode="w") as options_file:
json.dump(vars(args), options_file, sort_keys=True, ensure_ascii=False, indent=2)
# Set the random seed and the number of threads
keras.utils.set_random_seed(args.seed)
torch.set_num_threads(args.threads)
torch.set_num_interop_threads(args.threads)
# Load the data
if args.treebank_ids and max(len(args.train), len(args.dev), len(args.test)) > 1:
print("WARNING: With treebank_ids, treebanks must always be in the same position in the train/dev/test.")
if args.load:
train = UDDataset.from_mappings(os.path.join(os.path.dirname(args.load[0]), "mappings.pkl"))
else:
train = UDDatasetMerged([UDDataset(path, args, treebank_id=i if args.treebank_ids else None) for i, path in enumerate(args.train)])
train.save_mappings(os.path.join(args.logdir, "mappings.pkl"))
devs = [UDDataset(path, args, treebank_id=i if args.treebank_ids else None, train_dataset=train) for i, path in enumerate(args.dev)]
tests = [UDDataset(path, args, treebank_id=i if args.treebank_ids else None, train_dataset=train) for i, path in enumerate(args.test)]
# Create the model
model = LatinPipeModel(train, args)
# Create the dataloaders
if not args.load:
train_dataloader = TorchUDDataLoader(TorchUDDataset(train, model.tokenizers, args, training=True), args)
dev_dataloaders = [TorchUDDataLoader(TorchUDDataset(dataset, model.tokenizers, args, training=False), args) for dataset in devs]
test_dataloaders = [TorchUDDataLoader(TorchUDDataset(dataset, model.tokenizers, args, training=False), args) for dataset in tests]
# Perform prediction if requested
if args.load:
if len(args.load) > 1:
model = LatinPipeModelEnsemble(model, args)
for dataloader in dev_dataloaders:
model.evaluate(dataloader, save_as=os.path.splitext(
os.path.join(args.exp, os.path.basename(dataloader.dataset.ud_dataset.path)) if args.exp else dataloader.dataset.ud_dataset.path
)[0] + ".predicted.conllu")
for dataloader in test_dataloaders:
model.predict(dataloader, save_as=os.path.splitext(
os.path.join(args.exp, os.path.basename(dataloader.dataset.ud_dataset.path)) if args.exp else dataloader.dataset.ud_dataset.path
)[0] + ".predicted.conllu")
return
# Train the model
class Evaluator(keras.callbacks.Callback):
def __init__(self, wandb_log):
super().__init__()
self._wandb_log = wandb_log
self._metrics = [["", "Lemmas", "UPOS", "XPOS", "UFeats"][tag] for tag in args.tags] + (["UAS", "LAS"] if args.parse else [])
def on_epoch_end(self, epoch, logs=None):
logs["learning_rate"] = keras.ops.convert_to_numpy(model.optimizer.learning_rate)
for dataloader in dev_dataloaders + (test_dataloaders if epoch + 1 == args.epochs + args.epochs_frozen else []):
_, metrics = model.evaluate(dataloader, save_as=os.path.splitext(
os.path.join(args.logdir, os.path.basename(dataloader.dataset.ud_dataset.path))
)[0] + ".{:02d}.conllu".format(epoch + 1))
for metric, score in metrics.items():
if metric in self._metrics:
logs["{}_{}".format(os.path.splitext(os.path.basename(dataloader.dataset.ud_dataset.path))[0], metric)] = 100 * score.f1
aggregations = {"la_ud213": [("la_ittb-ud", 390_787), ("la_llct-ud", 194_143), ("la_proiel-ud", 177_558),
("la_udante-ud", 30_450), ("la_perseus-ud", 16_486)]}
for split in ["dev", "test"]:
for metric in self._metrics:
for aggregation, parts in aggregations.items():
values = [logs.get("{}-{}_{}".format(part, split, metric), None) for part, _ in parts]
if all(value is not None for value in values):
logs["{}-{}_{}".format(aggregation, split, metric)] = np.mean(values)
logs["{}-sqrt-{}_{}".format(aggregation, split, metric)] = np.average(values, weights=[size**0.5 for _, size in parts])
if self._wandb_log:
self._wandb_log(logs, step=epoch + 1, commit=True)
wandb_log = None
if args.wandb:
import wandb
wandb.init(project="ufal-evalatin2024", name=args.exp, config=vars(args))
wandb_log = wandb.log
evaluator = Evaluator(wandb_log)
if args.epochs_frozen:
model.compile(len(train_dataloader), frozen=True)
model.fit(train_dataloader, epochs=args.epochs_frozen, verbose=args.verbose, callbacks=[evaluator])
if args.epochs:
model.compile(len(train_dataloader), frozen=False)
model.fit(train_dataloader, initial_epoch=args.epochs_frozen, epochs=args.epochs_frozen + args.epochs, verbose=args.verbose, callbacks=[evaluator])
if args.save_checkpoint:
model.save_weights(os.path.join(args.logdir, "model.weights.h5"))
if __name__ == "__main__":
main([] if "__file__" not in globals() else None)
|