File size: 49,667 Bytes
ec63fa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
#!/usr/bin/env python3
#
# This file is part of LatinPipe EvaLatin 24
# <https://github.com/ufal/evalatin2024-latinpipe>.
#
# Copyright 2024 Institute of Formal and Applied Linguistics, Faculty of
# Mathematics and Physics, Charles University in Prague, Czech Republic.
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.

import argparse
import collections
import datetime
import difflib
import io
import json
import os
import pickle
import re
from typing import Self
os.environ.setdefault("KERAS_BACKEND", "torch")

import keras
import numpy as np
import torch
import transformers
import ufal.chu_liu_edmonds

import latinpipe_evalatin24_eval

parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", default=32, type=int, help="Batch size.")
parser.add_argument("--deprel", default="full", choices=["full", "universal"], type=str, help="Deprel kind.")
parser.add_argument("--dev", default=[], nargs="+", type=str, help="Dev CoNLL-U files.")
parser.add_argument("--dropout", default=0.5, type=float, help="Dropout")
parser.add_argument("--embed_tags", default="", type=str, help="Tags to embed on input.")
parser.add_argument("--epochs", default=30, type=int, help="Number of epochs.")
parser.add_argument("--epochs_frozen", default=0, type=int, help="Number of epochs with frozen transformer.")
parser.add_argument("--exp", default=None, type=str, help="Experiment name.")
parser.add_argument("--label_smoothing", default=0.03, type=float, help="Label smoothing.")
parser.add_argument("--learning_rate", default=2e-5, type=float, help="Learning rate.")
parser.add_argument("--learning_rate_decay", default="cos", choices=["none", "cos"], type=str, help="Learning rate decay.")
parser.add_argument("--learning_rate_warmup", default=2_000, type=int, help="Number of warmup steps.")
parser.add_argument("--load", default=[], type=str, nargs="*", help="Path to load models from.")
parser.add_argument("--max_train_sentence_len", default=150, type=int, help="Max sentence subwords in training.")
parser.add_argument("--optimizer", default="adam", choices=["adam", "adafactor"], type=str, help="Optimizer.")
parser.add_argument("--parse", default=1, type=int, help="Parse.")
parser.add_argument("--parse_attention_dim", default=512, type=int, help="Parse attention dimension.")
parser.add_argument("--rnn_dim", default=512, type=int, help="RNN layers size.")
parser.add_argument("--rnn_layers", default=2, type=int, help="RNN layers.")
parser.add_argument("--rnn_type", default="LSTMTorch", choices=["LSTM", "GRU", "LSTMTorch", "GRUTorch"], help="RNN type.")
parser.add_argument("--save_checkpoint", default=False, action="store_true", help="Save checkpoint.")
parser.add_argument("--seed", default=42, type=int, help="Initial random seed.")
parser.add_argument("--steps_per_epoch", default=1_000, type=int, help="Steps per epoch.")
parser.add_argument("--single_root", default=1, type=int, help="Single root allowed only.")
parser.add_argument("--subword_combination", default="first", choices=["first", "last", "sum", "concat"], type=str, help="Subword combination.")
parser.add_argument("--tags", default="UPOS,LEMMAS,FEATS", type=str, help="Tags to predict.")
parser.add_argument("--task_hidden_layer", default=2_048, type=int, help="Task hidden layer size.")
parser.add_argument("--test", default=[], nargs="+", type=str, help="Test CoNLL-U files.")
parser.add_argument("--train", default=[], nargs="+", type=str, help="Train CoNLL-U files.")
parser.add_argument("--train_sampling_exponent", default=0.5, type=float, help="Train sampling exponent.")
parser.add_argument("--transformers", nargs="+", type=str, help="Transformers models to use.")
parser.add_argument("--treebank_ids", default=False, action="store_true", help="Include treebank IDs on input.")
parser.add_argument("--threads", default=4, type=int, help="Maximum number of threads to use.")
parser.add_argument("--verbose", default=2, type=int, help="Verbosity")
parser.add_argument("--wandb", default=False, action="store_true", help="Log in WandB.")
parser.add_argument("--word_masking", default=None, type=float, help="Word masking")

os.environ["PYTORCH_MPS_HIGH_WATERMARK_RATIO"] = "0.0"

class UDDataset:
    FORMS, LEMMAS, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC, FACTORS = range(10)
    FACTORS_MAP = {"FORMS": FORMS, "LEMMAS": LEMMAS, "UPOS": UPOS, "XPOS": XPOS, "FEATS": FEATS,
                   "HEAD": HEAD, "DEPREL": DEPREL, "DEPS": DEPS, "MISC": MISC}
    RE_EXTRAS = re.compile(r"^#|^\d+-|^\d+\.")

    class Factor:
        def __init__(self, train_factor: Self = None):
            self.words_map = train_factor.words_map if train_factor else {"<unk>": 0}
            self.words = train_factor.words if train_factor else ["<unk>"]
            self.word_ids = []
            self.strings = []

    def __init__(self, path: str, args: argparse.Namespace, treebank_id: int|None = None, train_dataset: Self = None, text: str|None = None):
        self.path = path

        # Create factors and other variables
        self.factors = []
        for f in range(self.FACTORS):
            self.factors.append(self.Factor(train_dataset.factors[f] if train_dataset is not None else None))
        self._extras = []

        lemma_transforms = collections.Counter()

        # Load the CoNLL-U file
        with open(path, "r", encoding="utf-8") if text is None else io.StringIO(text) as file:
            in_sentence = False
            for line in file:
                line = line.rstrip("\r\n")

                if line:
                    if self.RE_EXTRAS.match(line):
                        if in_sentence:
                            while len(self._extras) < len(self.factors[0].strings): self._extras.append([])
                            while len(self._extras[-1]) <= len(self.factors[0].strings[-1]):
                                self._extras[-1].append("")
                        else:
                            while len(self._extras) <= len(self.factors[0].strings): self._extras.append([])
                            if not len(self._extras[-1]): self._extras[-1].append("")
                        self._extras[-1][-1] += ("\n" if self._extras[-1][-1] else "") + line
                        continue

                    columns = line.split("\t")[1:]
                    for f in range(self.FACTORS):
                        factor = self.factors[f]
                        if not in_sentence:
                            factor.word_ids.append([])
                            factor.strings.append([])

                        word = columns[f]
                        factor.strings[-1].append(word)

                        # Add word to word_ids
                        if f == self.FORMS:
                            # For formw, we do not remap strings into IDs because the tokenizer will create the subwords IDs for us.
                            factor.word_ids[-1].append(0)
                        elif f == self.HEAD:
                            factor.word_ids[-1].append(int(word) if word != "_" else -1)
                        elif f == self.LEMMAS:
                            factor.word_ids[-1].append(0)
                            lemma_transforms[(columns[self.FORMS], word)] += 1
                        else:
                            if f == self.DEPREL and args.deprel == "universal":
                                word = word.split(":")[0]
                            if word not in factor.words_map:
                                if train_dataset is not None:
                                    word = "<unk>"
                                else:
                                    factor.words_map[word] = len(factor.words)
                                    factor.words.append(word)
                            factor.word_ids[-1].append(factor.words_map[word])
                    in_sentence = True
                else:
                    in_sentence = False
                    for factor in self.factors:
                        if len(factor.word_ids): factor.word_ids[-1] = np.array(factor.word_ids[-1], np.int32)

            # Also load the file for evaluation if it is not a training dataset
            if train_dataset is not None:
                file.seek(0, io.SEEK_SET)
                self.conllu_for_eval = latinpipe_evalatin24_eval.load_conllu(file)

        # Construct lemma rules
        self.finalize_lemma_rules(lemma_transforms, create_rules=train_dataset is None)

        # The dataset consists of a single treebank
        self.treebank_ranges = [(0, len(self))]
        self.treebank_ids = [treebank_id]

        # Create an empty tokenize cache
        self._tokenizer_cache = {}

    def __len__(self):
        return len(self.factors[0].strings)

    def save_mappings(self, path: str) -> None:
        mappings = UDDataset.__new__(UDDataset)
        mappings.factors = []
        for factor in self.factors:
            mappings.factors.append(UDDataset.Factor.__new__(UDDataset.Factor))
            mappings.factors[-1].words = factor.words
        with open(path, "wb") as mappings_file:
            pickle.dump(mappings, mappings_file, protocol=4)

    @staticmethod
    def from_mappings(path: str) -> Self:
        with open(path, "rb") as mappings_file:
            mappings = pickle.load(mappings_file)
        for factor in mappings.factors:
            factor.words_map = {word: i for i, word in enumerate(factor.words)}
        return mappings

    @staticmethod
    def create_lemma_rule(form: str, lemma: str) -> str:
        diff = difflib.SequenceMatcher(None, form.lower(), lemma.lower(), False)
        rule, in_prefix = [], True
        for tag, i1, i2, j1, j2 in diff.get_opcodes():
            if i2 > len(form) // 3 and in_prefix:
                in_prefix = False
                if tag == "equal":
                    mode, jd = "L" if lemma[j2 - 1].islower() else "U", j2 - 1
                    while jd > j1 and lemma[jd - 1].islower() == lemma[j2 - 1].islower(): jd -= 1
                    rule.extend(["l" if lemma[j].islower() else "u" for j in range(j1, jd)])
                    rule.extend(mode * (len(form) - i2 + 1))
                if tag in ["replace", "delete"]:
                    rule.extend("D" * (len(form) - i2 + 1))
                if tag in ["replace", "insert"]:
                    rule.extend("i" + lemma[j] for j in range(j1, j2))
            else:
                if tag == "equal":
                    rule.extend(["l" if lemma[j].islower() else "u" for j in range(j1, j2)])
                if tag in ["replace", "delete"]:
                    rule.extend("d" * (i2 - i1))
                if tag in ["replace", "insert"]:
                    rule.extend("i" + lemma[j] for j in range(j1, j2))
        return "".join(rule)

    @staticmethod
    def apply_lemma_rule(rule: str, form: str) -> str:
        def error():
            # print("Error: cannot decode lemma rule '{}' with form '{}', copying input.".format(rule, form))
            return form

        if rule == "<unk>":
            return form

        lemma, r, i = [], 0, 0
        while r < len(rule):
            if rule[r] == "i":
                if r + 1 == len(rule):
                    return error()
                r += 1
                lemma.append(rule[r])
            elif rule[r] == "d":
                i += 1
            elif rule[r] in ("l", "u"):
                if i == len(form):
                    return error()
                lemma.append(form[i].lower() if rule[r] == "l" else form[i].upper())
                i += 1
            elif rule[r] in ("L", "U", "D"):
                i2 = len(form)
                while r + 1 < len(rule) and rule[r + 1] == rule[r]:
                    r += 1
                    i2 -= 1
                if i2 < i:
                    return error()
                if rule[r] == "L":
                    lemma.extend(form[i:i2].lower())
                if rule[r] == "U":
                    lemma.extend(form[i:i2].upper())
                i = i2
            else:
                return error()
            r += 1
        if i != len(form) or not lemma:
            return error()
        return "".join(lemma)

    def finalize_lemma_rules(self, lemma_transforms: collections.Counter, create_rules: bool) -> None:
        forms, lemmas = self.factors[self.FORMS], self.factors[self.LEMMAS]

        # Generate all rules
        rules_merged, rules_all = collections.Counter(), {}
        for form, lemma in lemma_transforms:
            rule = self.create_lemma_rule(form, lemma)
            rules_all[(form, lemma)] = rule
            if create_rules:
                rules_merged[rule] += 1

        # Keep the rules that are used more than once
        if create_rules:
            for rule, count in rules_merged.items():
                if count > 1:
                    lemmas.words_map[rule] = len(lemmas.words)
                    lemmas.words.append(rule)

        # Store the rules in the dataset
        for i in range(len(forms.strings)):
            for j in range(len(forms.strings[i])):
                rule = rules_all.get((forms.strings[i][j], lemmas.strings[i][j]))
                lemmas.word_ids[i][j] = lemmas.words_map.get(rule, 0)

    def tokenize(self, tokenizer: transformers.PreTrainedTokenizer) -> tuple[list[np.ndarray], list[np.ndarray]]:
        if tokenizer not in self._tokenizer_cache:
            assert tokenizer.cls_token_id is not None, "The tokenizer must have a CLS token"

            tokenized = tokenizer(self.factors[0].strings, add_special_tokens=True, is_split_into_words=True)

            tokens, word_indices = [], []
            for i, sentence in enumerate(tokenized.input_ids):
                offset = 0
                if not len(sentence) or sentence[0] != tokenizer.cls_token_id:
                    # Handle tokenizers that do not add CLS tokens, which we need for prediction
                    # of the root nodes during parsing. For such tokenizers, we added the CLS token
                    # manually already, but the build_inputs_with_special_tokens() might not have added it.
                    sentence = [tokenizer.cls_token_id] + sentence
                    offset = 1

                treebank_id = None
                for id_, (start, end) in zip(self.treebank_ids, self.treebank_ranges):
                    if start <= i < end:
                        treebank_id = id_
                if treebank_id is not None:
                    sentence.insert(1, tokenizer.additional_special_tokens_ids[treebank_id])
                    offset += 1

                tokens.append(np.array(sentence, dtype=np.int32))
                word_indices.append([(0, 0)])
                for j in range(len(self.factors[0].strings[i])):
                    span = tokenized.word_to_tokens(i, j)
                    if (span == None):
                        print("-x-x-x-", i, j)
                    try:
                        word_indices[-1].append((offset + span.start, offset + span.end - 1))
                    except:
                        #abracadabra = 0
                        print(treebank_id)
                        input("??")
                word_indices[-1] = np.array(word_indices[-1], dtype=np.int32)


            self._tokenizer_cache[tokenizer] = (tokens, word_indices)

        return self._tokenizer_cache[tokenizer]

    def write_sentence(self, output: io.TextIOBase, index: int, overrides: list = None) -> None:
        assert index < len(self.factors[0].strings), "Sentence index out of range"

        for i in range(len(self.factors[0].strings[index]) + 1):
            # Start by writing extras
            if index < len(self._extras) and i < len(self._extras[index]) and self._extras[index][i]:
                print(self._extras[index][i], file=output)
            if i == len(self.factors[0].strings[index]): break

            fields = []
            fields.append(str(i + 1))
            for f in range(self.FACTORS):
                factor = self.factors[f]
                field = factor.strings[index][i]

                # Overrides
                if overrides is not None and f < len(overrides) and overrides[f] is not None:
                    override = overrides[f][i]
                    if f == self.HEAD:
                        field = str(override) if override >= 0 else "_"
                    else:
                        field = factor.words[override]
                        if f == self.LEMMAS:
                            field = self.apply_lemma_rule(field, self.factors[self.FORMS].strings[index][i])
                fields.append(field)

            print("\t".join(fields), file=output)
        print(file=output)


class UDDatasetMerged(UDDataset):
    def __init__(self, datasets: list[UDDataset]):
        # Create factors and other variables
        self.factors = []
        for f in range(self.FACTORS):
            self.factors.append(self.Factor(None))

        lemma_transforms = collections.Counter()

        self.treebank_ranges, self.treebank_ids = [], []
        for dataset in datasets:
            assert len(dataset.treebank_ranges) == len(dataset.treebank_ids) == 1
            self.treebank_ranges.append((len(self), len(self) + len(dataset)))
            self.treebank_ids.append(dataset.treebank_ids[0])
            for s in range(len(dataset)):
                for f in range(self.FACTORS):
                    factor = self.factors[f]
                    factor.strings.append(dataset.factors[f].strings[s])
                    factor.word_ids.append([])
                    for i, word in enumerate(dataset.factors[f].strings[s]):
                        if f == self.FORMS:
                            # We do not remap strings into IDs because the tokenizer will create the subwords IDs for us.
                            factor.word_ids[-1].append(0)
                        if f == self.HEAD:
                            factor.word_ids[-1].append(word)
                        elif f == self.LEMMAS:
                            factor.word_ids[-1].append(0)
                            lemma_transforms[(dataset.factors[self.FORMS].strings[s][i], word)] += 1
                        else:
                            if word not in factor.words_map:
                                factor.words_map[word] = len(factor.words)
                                factor.words.append(word)
                            factor.word_ids[-1].append(factor.words_map[word])
                    self.factors[f].word_ids[-1] = np.array(self.factors[f].word_ids[-1], np.int32)

        # Construct lemma rules
        self.finalize_lemma_rules(lemma_transforms, create_rules=True)

        # Create an empty tokenize cache
        self._tokenizer_cache = {}


class TorchUDDataset(torch.utils.data.Dataset):
    def __init__(self, ud_dataset: UDDataset, tokenizers: list[transformers.PreTrainedTokenizer], args: argparse.Namespace, training: bool):
        self.ud_dataset = ud_dataset
        self.training = training
        self._outputs_to_input = [args.tags.index(tag) for tag in args.embed_tags]

        self._inputs = [ud_dataset.tokenize(tokenizer) for tokenizer in tokenizers]
        self._outputs = [ud_dataset.factors[tag].word_ids for tag in args.tags]
        if args.parse:
            self._outputs.append(ud_dataset.factors[ud_dataset.HEAD].word_ids)
            self._outputs.append(ud_dataset.factors[ud_dataset.DEPREL].word_ids)

        # Trim the sentences if needed
        if training and args.max_train_sentence_len:
            trimmed_sentences = 0
            for index in range(len(self)):  # Over sentences
                max_words, need_trimming = None, False
                for tokens, word_indices in self._inputs:  # Over transformers
                    if max_words is None:
                        max_words = len(word_indices[index])
                    while word_indices[index][max_words - 1, 1] >= args.max_train_sentence_len:
                        max_words -= 1
                        need_trimming = True
                assert max_words >= 2, "Sentence too short after trimming"

                if need_trimming:
                    for tokens, word_indices in self._inputs:  # Over transformers
                        tokens[index] = tokens[index][:word_indices[index][max_words - 1, 1] + 1]
                        word_indices[index] = word_indices[index][:max_words]

                    for output in self._outputs:
                        output[index] = output[index][:max_words - 1]  # No CLS tokens in outputs
                    if args.parse:
                        self._outputs[-2][index] = np.array([head if head < max_words else -1 for head in self._outputs[-2][index]], np.int32)

                    trimmed_sentences += 1
            if trimmed_sentences:
                print("Trimmed {} out of {} sentences".format(trimmed_sentences, len(self)))

    def __len__(self):
        return len(self.ud_dataset)

    def __getitem__(self, index: int):
        inputs = []
        for tokens, word_indices in self._inputs:
            inputs.append(torch.from_numpy(tokens[index]))
            inputs.append(torch.from_numpy(word_indices[index]))
        for i in self._outputs_to_input:
            inputs.append(torch.from_numpy(self._outputs[i][index]))

        outputs = []
        for output in self._outputs:
            outputs.append(torch.from_numpy(output[index]))

        return inputs, outputs


class TorchUDDataLoader(torch.utils.data.DataLoader):
    class MergedDatasetSampler(torch.utils.data.Sampler):
        def __init__(self, ud_dataset: UDDataset, args: argparse.Namespace):
            self._treebank_ranges = ud_dataset.treebank_ranges
            self._sentences_per_epoch = args.steps_per_epoch * args.batch_size
            self._generator = torch.Generator().manual_seed(args.seed)

            treebank_weights = np.array([r[1] - r[0] for r in self._treebank_ranges], np.float32)
            treebank_weights = treebank_weights ** args.train_sampling_exponent
            treebank_weights /= np.sum(treebank_weights)
            self._treebank_sizes = np.array(treebank_weights * self._sentences_per_epoch, np.int32)
            self._treebank_sizes[:self._sentences_per_epoch - np.sum(self._treebank_sizes)] += 1
            self._treebank_indices = [[] for _ in self._treebank_ranges]

        def __len__(self):
            return self._sentences_per_epoch

        def __iter__(self):
            indices = []
            for i in range(len(self._treebank_ranges)):
                required = self._treebank_sizes[i]
                while required:
                    if not len(self._treebank_indices[i]):
                        self._treebank_indices[i] = self._treebank_ranges[i][0] + torch.randperm(
                            self._treebank_ranges[i][1] - self._treebank_ranges[i][0], generator=self._generator)
                    indices.append(self._treebank_indices[i][:required])
                    required -= min(len(self._treebank_indices[i]), required)
            indices = torch.concatenate(indices, axis=0)
            return iter(indices[torch.randperm(len(indices), generator=self._generator)])

    def _collate_fn(self, batch):
        inputs, outputs = zip(*batch)

        batch_inputs = []
        for sequences in zip(*inputs):
            batch_inputs.append(torch.nn.utils.rnn.pad_sequence(sequences, batch_first=True, padding_value=-1))

        batch_outputs = []
        for output in zip(*outputs):
            batch_outputs.append(torch.nn.utils.rnn.pad_sequence(output, batch_first=True, padding_value=-1))

        batch_weights = [batch_output != -1 for batch_output in batch_outputs]

        return tuple(batch_inputs), tuple(batch_outputs), tuple(batch_weights)

    def __init__(self, dataset: TorchUDDataset, args: argparse.Namespace, **kwargs):
        sampler = None
        if dataset.training:
            if len(dataset.ud_dataset.treebank_ranges) == 1:
                sampler = torch.utils.data.RandomSampler(dataset, generator=torch.Generator().manual_seed(args.seed))
            else:
                assert args.steps_per_epoch is not None, "Steps per epoch must be specified when training on multiple treebanks"
                sampler = self.MergedDatasetSampler(dataset.ud_dataset, args)
        super().__init__(dataset, batch_size=args.batch_size, sampler=sampler, collate_fn=self._collate_fn, **kwargs)


class LatinPipeModel(keras.Model):
    class HFTransformerLayer(keras.layers.Layer):
        def __init__(self, transformer: transformers.PreTrainedModel, subword_combination: str, word_masking: float = None, mask_token_id: int = None, **kwargs):
            super().__init__(**kwargs)
            self._transformer = transformer
            self._subword_combination = subword_combination
            self._word_masking = word_masking
            self._mask_token_id = mask_token_id

        def call(self, inputs, word_indices, training=None):
            if training and self._word_masking:
                mask = keras.ops.cast(keras.random.uniform(keras.ops.shape(inputs), dtype="float32") < self._word_masking, inputs.dtype)
                inputs = (1 - mask) * inputs + mask * self._mask_token_id
            if (training or False) != self._transformer.training:
                self._transformer.train(training or False)
            if self._subword_combination != "last":
                first_subwords = keras.ops.take_along_axis(
                    self._transformer(keras.ops.maximum(inputs, 0), attention_mask=inputs > -1).last_hidden_state,
                    keras.ops.expand_dims(keras.ops.maximum(word_indices[..., 0], 0), axis=-1),
                    axis=1,
                )
            if self._subword_combination != "first":
                last_subwords = keras.ops.take_along_axis(
                    self._transformer(keras.ops.maximum(inputs, 0), attention_mask=inputs > -1).last_hidden_state,
                    keras.ops.expand_dims(keras.ops.maximum(word_indices[..., 1], 0), axis=-1),
                    axis=1,
                )
            if self._subword_combination == "first":
                return first_subwords
            elif self._subword_combination == "last":
                return last_subwords
            elif self._subword_combination == "sum":
                return first_subwords + last_subwords
            elif self._subword_combination == "concat":
                return keras.ops.concatenate([first_subwords, last_subwords], axis=-1)
            else:
                raise ValueError("Unknown subword combination '{}'".format(self._subword_combination))

    class LSTMTorch(keras.layers.Layer):
        def __init__(self, units: int, **kwargs):
            super().__init__(**kwargs)
            self._units = units

        def build(self, input_shape):
            self._lstm = torch.nn.LSTM(input_shape[-1], self._units, batch_first=True, bidirectional=True)

        def call(self, inputs, lengths):
            packed_result, _ = self._lstm.module(torch.nn.utils.rnn.pack_padded_sequence(inputs, lengths.cpu(), batch_first=True, enforce_sorted=False))
            unpacked_result = torch.nn.utils.rnn.unpack_sequence(packed_result)
            return torch.nn.utils.rnn.pad_sequence(unpacked_result, batch_first=True, padding_value=0)

    class GRUTorch(keras.layers.Layer):
        def __init__(self, units: int, **kwargs):
            super().__init__(**kwargs)
            self._units = units

        def build(self, input_shape):
            self._gru = torch.nn.GRU(input_shape[-1], self._units, batch_first=True, bidirectional=True)

        def call(self, inputs, lengths):
            packed_result, _ = self._gru(torch.nn.utils.rnn.pack_padded_sequence(inputs, lengths.cpu(), batch_first=True, enforce_sorted=False))
            unpacked_result = torch.nn.utils.rnn.unpack_sequence(packed_result)
            return torch.nn.utils.rnn.pad_sequence(unpacked_result, batch_first=True, padding_value=0)

    class ParsingHead(keras.layers.Layer):
        def __init__(self, num_deprels: int, task_hidden_layer: int, parse_attention_dim: int, dropout: float, **kwargs):
            super().__init__(**kwargs)
            self._head_queries_hidden = keras.layers.Dense(task_hidden_layer, activation="relu")
            self._head_queries_output = keras.layers.Dense(parse_attention_dim)
            self._head_keys_hidden = keras.layers.Dense(task_hidden_layer, activation="relu")
            self._head_keys_output = keras.layers.Dense(parse_attention_dim)
            self._deprel_hidden = keras.layers.Dense(task_hidden_layer, activation="relu")
            self._deprel_output = keras.layers.Dense(num_deprels)
            self._dropout = keras.layers.Dropout(dropout)

        def call(self, embeddings, embeddings_wo_root, embeddings_mask):
            head_queries = self._head_queries_output(self._dropout(self._head_queries_hidden(embeddings_wo_root)))
            head_keys = self._head_keys_output(self._dropout(self._head_keys_hidden(embeddings)))
            head_scores = keras.ops.matmul(head_queries, keras.ops.transpose(head_keys, axes=[0, 2, 1])) / keras.ops.sqrt(head_queries.shape[-1])

            head_scores_mask = keras.ops.cast(keras.ops.expand_dims(embeddings_mask, axis=1), head_scores.dtype)
            head_scores = head_scores * head_scores_mask - 1e9 * (1 - head_scores_mask)

            predicted_heads = keras.ops.argmax(head_scores, axis=-1)
            predicted_head_embeddings = keras.ops.take_along_axis(embeddings, keras.ops.expand_dims(predicted_heads, axis=-1), axis=1)
            deprel_hidden = keras.ops.concatenate([embeddings_wo_root, predicted_head_embeddings], axis=-1)
            deprel_scores = self._deprel_output(self._dropout(self._deprel_hidden(deprel_hidden)))

            return head_scores, deprel_scores

    class SparseCategoricalCrossentropyWithLabelSmoothing(keras.losses.Loss):
        def __init__(self, from_logits: bool, label_smoothing: float, **kwargs):
            super().__init__(**kwargs)
            self._from_logits = from_logits
            self._label_smoothing = label_smoothing

        def call(self, y_true, y_pred):
            y_gold = keras.ops.one_hot(keras.ops.maximum(y_true, 0), y_pred.shape[-1])
            if self._label_smoothing:
                y_pred_mask = keras.ops.cast(y_pred > -1e9, y_pred.dtype)
                y_gold = y_gold * (1 - self._label_smoothing) + y_pred_mask / keras.ops.sum(y_pred_mask, axis=-1, keepdims=True) * self._label_smoothing
            return keras.losses.categorical_crossentropy(y_gold, y_pred, from_logits=self._from_logits)

    def __init__(self, dataset: UDDataset, args: argparse.Namespace):
        self._dataset = dataset
        self._args = args

        # Create the transformer models
        self._tokenizers, self._transformers = [], []
        for name in args.transformers:
            self._tokenizers.append(transformers.AutoTokenizer.from_pretrained(name, add_prefix_space=True))

            transformer, transformer_opts = transformers.AutoModel, {}
            if "mt5" in name.lower():
                transformer = transformers.MT5EncoderModel
            if name.endswith(("LaTa", "PhilTa")):
                transformer = transformers.T5EncoderModel
            if name.endswith(("LaBerta", "PhilBerta")):
                transformer_opts["add_pooling_layer"] = False

            if args.load:
                transformer = transformer.from_config(transformers.AutoConfig.from_pretrained(name), **transformer_opts)
            else:
                transformer = transformer.from_pretrained(name, **transformer_opts)

            # Create additional tokens
            additional_tokens = {}
            if args.treebank_ids:
                additional_tokens["additional_special_tokens"] = ["[TREEBANK_ID_{}]".format(i) for i in range(len(dataset.treebank_ids))]
            if self._tokenizers[-1].cls_token_id is None:  # Generate CLS token if not present (for representing sentence root in parsing).
                additional_tokens["cls_token"] = "[CLS]"
            if additional_tokens:
                self._tokenizers[-1].add_special_tokens(additional_tokens)
                transformer.resize_token_embeddings(len(self._tokenizers[-1]))
            if args.treebank_ids:
                assert len(self._tokenizers[-1].additional_special_tokens) == len(dataset.treebank_ids)

            self._transformers.append(self.HFTransformerLayer(transformer, args.subword_combination, args.word_masking, self._tokenizers[-1].mask_token_id))

        # Create the network
        inputs = []
        for _ in args.transformers:
            inputs.extend([keras.layers.Input(shape=[None], dtype="int32"), keras.layers.Input(shape=[None, 2], dtype="int32")])
        for _ in args.embed_tags:
            inputs.append(keras.layers.Input(shape=[None], dtype="int32"))

        # Run the transformer models
        embeddings = []
        for tokens, word_indices, transformer in zip(inputs[::2], inputs[1::2], self._transformers):
            embeddings.append(transformer(tokens, word_indices))
        embeddings = keras.layers.Concatenate(axis=-1)(embeddings)
        embeddings = keras.layers.Dropout(args.dropout)(embeddings)

        # Heads for the tagging tasks
        outputs = []
        for tag in args.tags:
            hidden = keras.layers.Dense(args.task_hidden_layer, activation="relu")(embeddings[:, 1:])
            hidden = keras.layers.Dropout(args.dropout)(hidden)
            outputs.append(keras.layers.Dense(len(dataset.factors[tag].words))(hidden))

        # Head for parsing
        if args.parse:
            if args.embed_tags:
                all_embeddings = [embeddings]
                for factor, input_tags in zip(args.embed_tags, inputs[-len(args.embed_tags):]):
                    embedding_layer = keras.layers.Embedding(len(dataset.factors[factor].words) + 1, 256)
                    all_embeddings.append(keras.layers.Dropout(args.dropout)(embedding_layer(keras.ops.pad(input_tags + 1, [(0, 0), (1, 0)]))))
                embeddings = keras.ops.concatenate(all_embeddings, axis=-1)

            for i in range(args.rnn_layers):
                if args.rnn_type in ["LSTM", "GRU"]:
                    hidden = keras.layers.Bidirectional(getattr(keras.layers, args.rnn_type)(args.rnn_dim, return_sequences=True))(embeddings, mask=inputs[1][..., 0] > -1)
                elif args.rnn_type in ["LSTMTorch", "GRUTorch"]:
                    hidden = getattr(self, args.rnn_type)(args.rnn_dim)(embeddings, keras.ops.sum(inputs[1][..., 0] > -1, axis=-1))
                hidden = keras.layers.Dropout(args.dropout)(hidden)
                embeddings = hidden + (embeddings if i else 0)

            outputs.extend(self.ParsingHead(
                len(dataset.factors[dataset.DEPREL].words), args.task_hidden_layer, args.parse_attention_dim, args.dropout,
            )(embeddings, embeddings[:, 1:], inputs[1][..., 0] > -1))

        super().__init__(inputs=inputs, outputs=outputs)
        if args.load:
            self.load_weights(args.load[0])

    def compile(self, epoch_batches: int, frozen: bool):
        args = self._args

        for transformer in self._transformers:
            transformer.trainable = not frozen

        if frozen:
            schedule = 1e-3
        else:
            schedule = keras.optimizers.schedules.CosineDecay(
                0. if args.learning_rate_warmup else args.learning_rate,
                args.epochs * epoch_batches - args.learning_rate_warmup,
                alpha=0.0 if args.learning_rate_decay != "none" else 1.0,
                warmup_target=args.learning_rate if args.learning_rate_warmup else None,
                warmup_steps=args.learning_rate_warmup,
            )
        if args.optimizer == "adam":
            optimizer = keras.optimizers.Adam(schedule)
        elif args.optimizer == "adafactor":
            optimizer = keras.optimizers.Adafactor(schedule)
        else:
            raise ValueError("Unknown optimizer '{}'".format(args.optimizer))
        super().compile(
            optimizer=optimizer,
            loss=self.SparseCategoricalCrossentropyWithLabelSmoothing(from_logits=True, label_smoothing=args.label_smoothing),
        )

    @property
    def tokenizers(self) -> list[transformers.PreTrainedTokenizer]:
        return self._tokenizers

    def predict(self, dataloader: TorchUDDataLoader, save_as: str|None = None, args_override: argparse.Namespace|None = None) -> str:
        ud_dataset = dataloader.dataset.ud_dataset
        args = self._args if args_override is None else args_override
        conllu, sentence = io.StringIO(), 0

        for batch_inputs, _, _ in dataloader:
            predictions = self.predict_on_batch(batch_inputs)
            for b in range(len(batch_inputs[0])):
                sentence_len = len(ud_dataset.factors[ud_dataset.FORMS].strings[sentence])
                overrides = [None] * ud_dataset.FACTORS
                for tag, prediction in zip(args.tags, predictions):
                    overrides[tag] = np.argmax(prediction[b, :sentence_len], axis=-1)
                if args.parse:
                    heads, deprels = predictions[-2:]
                    padded_heads = np.zeros([sentence_len + 1, sentence_len + 1], dtype=np.float64)
                    padded_heads[1:] = heads[b, :sentence_len, :sentence_len + 1]
                    padded_heads[1:] -= np.max(padded_heads[1:], axis=-1, keepdims=True)
                    padded_heads[1:] -= np.log(np.sum(np.exp(padded_heads[1:]), axis=-1, keepdims=True))
                    if args.single_root:
                        selected_root = 1 + np.argmax(padded_heads[1:, 0])
                        padded_heads[:, 0] = np.nan
                        padded_heads[selected_root, 0] = 0
                    chosen_heads, _ = ufal.chu_liu_edmonds.chu_liu_edmonds(padded_heads)
                    overrides[ud_dataset.HEAD] = chosen_heads[1:]
                    overrides[ud_dataset.DEPREL] = np.argmax(deprels[b, :sentence_len], axis=-1)
                ud_dataset.write_sentence(conllu, sentence, overrides)
                sentence += 1

        conllu = conllu.getvalue()
        if save_as is not None:
            os.makedirs(os.path.dirname(save_as), exist_ok=True)
            with open(save_as, "w", encoding="utf-8") as conllu_file:
                conllu_file.write(conllu)
        return conllu

    def evaluate(self, dataloader: TorchUDDataLoader, save_as: str|None = None, args_override: argparse.Namespace|None = None) -> tuple[str, dict[str, float]]:
        conllu = self.predict(dataloader, save_as=save_as, args_override=args_override)
        evaluation = latinpipe_evalatin24_eval.evaluate(dataloader.dataset.ud_dataset.conllu_for_eval, latinpipe_evalatin24_eval.load_conllu(io.StringIO(conllu)))
        if save_as is not None:
            os.makedirs(os.path.dirname(save_as), exist_ok=True)
            with open(save_as + ".eval", "w", encoding="utf-8") as eval_file:
                for metric, score in evaluation.items():
                    print("{}: {:.2f}%".format(metric, 100 * score.f1), file=eval_file)
        return conllu, evaluation


class LatinPipeModelEnsemble:
    def __init__(self, latinpipe_model: LatinPipeModel, args: argparse.Namespace):
        self._latinpipe_model = latinpipe_model
        self._args = args

    def predict(self, dataloader: TorchUDDataLoader, save_as: str|None = None) -> str:
        def log_softmax(logits):
            logits -= np.max(logits, axis=-1, keepdims=True)
            logits -= np.log(np.sum(np.exp(logits), axis=-1, keepdims=True))
            return logits
        ud_dataset = dataloader.dataset.ud_dataset

        # First compute all predictions
        overrides = [[0] * len(ud_dataset) if tag in self._args.tags + ([ud_dataset.HEAD, ud_dataset.DEPREL] if self._args.parse else []) else None
                     for tag in range(ud_dataset.FACTORS)]
        for path in self._args.load:
            self._latinpipe_model.load_weights(path)
            sentence = 0
            for batch_inputs, _, _ in dataloader:
                predictions = self._latinpipe_model.predict_on_batch(batch_inputs)
                for b in range(len(batch_inputs[0])):
                    sentence_len = len(ud_dataset.factors[ud_dataset.FORMS].strings[sentence])
                    for tag, prediction in zip(self._args.tags, predictions):
                        overrides[tag][sentence] += log_softmax(prediction[b, :sentence_len])
                    if self._args.parse:
                        overrides[ud_dataset.HEAD][sentence] += log_softmax(predictions[-2][b, :sentence_len, :sentence_len + 1])
                        overrides[ud_dataset.DEPREL][sentence] += log_softmax(predictions[-1][b, :sentence_len])
                    sentence += 1

        # Predict the most likely class and generate CoNLL-U output
        conllu = io.StringIO()
        for sentence in range(len(ud_dataset)):
            sentence_overrides = [None] * ud_dataset.FACTORS
            for tag in self._args.tags:
                sentence_overrides[tag] = np.argmax(overrides[tag][sentence], axis=-1)
            if self._args.parse:
                padded_heads = np.pad(overrides[ud_dataset.HEAD][sentence], [(1, 0), (0, 0)]).astype(np.float64)
                if self._args.single_root:
                    selected_root = 1 + np.argmax(padded_heads[1:, 0])
                    padded_heads[:, 0] = np.nan
                    padded_heads[selected_root, 0] = 0
                chosen_heads, _ = ufal.chu_liu_edmonds.chu_liu_edmonds(padded_heads)
                sentence_overrides[ud_dataset.HEAD] = chosen_heads[1:]
                sentence_overrides[ud_dataset.DEPREL] = np.argmax(overrides[ud_dataset.DEPREL][sentence], axis=-1)
            ud_dataset.write_sentence(conllu, sentence, sentence_overrides)

        conllu = conllu.getvalue()
        if save_as is not None:
            os.makedirs(os.path.dirname(save_as), exist_ok=True)
            with open(save_as, "w", encoding="utf-8") as conllu_file:
                conllu_file.write(conllu)
        return conllu

    def evaluate(self, dataloader: TorchUDDataLoader, save_as: str|None = None) -> tuple[str, dict[str, float]]:
        return LatinPipeModel.evaluate(self, dataloader, save_as=save_as)


def main(params: list[str] | None = None) -> None:
    args = parser.parse_args(params)

    # If supplied, load configuration from a trained model
    if args.load:
        with open(os.path.join(os.path.dirname(args.load[0]), "options.json"), mode="r") as options_file:
            args = argparse.Namespace(**{k: v for k, v in json.load(options_file).items() if k not in [
                "dev", "exp", "load", "test", "threads", "verbose"]})
            args = parser.parse_args(params, namespace=args)
    else:
        assert args.train, "Either --load or --train must be set."
        assert args.transformers, "At least one transformer must be specified."

        # Post-process arguments
        args.embed_tags = [UDDataset.FACTORS_MAP[tag] for tag in args.embed_tags.split(",") if tag]
        args.tags = [UDDataset.FACTORS_MAP[tag] for tag in args.tags.split(",") if tag]
        args.script = os.path.basename(__file__)

        # Create logdir
        args.logdir = os.path.join("logs", "{}{}-{}-{}-s{}".format(
            args.exp + "-" if args.exp else "",
            os.path.splitext(os.path.basename(globals().get("__file__", "notebook")))[0],
            os.environ.get("SLURM_JOB_ID", ""),
            datetime.datetime.now().strftime("%y%m%d_%H%M%S"),
            args.seed,
            # ",".join(("{}={}".format(
            #     re.sub("(.)[^_]*_?", r"\1", k),
            #     ",".join(re.sub(r"^.*/", "", str(x)) for x in ((v if len(v) <= 1 else [v[0], "..."]) if isinstance(v, list) else [v])),
            # ) for k, v in sorted(vars(args).items()) if k not in ["dev", "exp", "load", "test", "threads", "verbose"]))
        ))
        print(json.dumps(vars(args), sort_keys=True, ensure_ascii=False, indent=2))
        os.makedirs(args.logdir, exist_ok=True)
        with open(os.path.join(args.logdir, "options.json"), mode="w") as options_file:
            json.dump(vars(args), options_file, sort_keys=True, ensure_ascii=False, indent=2)

    # Set the random seed and the number of threads
    keras.utils.set_random_seed(args.seed)
    torch.set_num_threads(args.threads)
    torch.set_num_interop_threads(args.threads)

    # Load the data
    if args.treebank_ids and max(len(args.train), len(args.dev), len(args.test)) > 1:
        print("WARNING: With treebank_ids, treebanks must always be in the same position in the train/dev/test.")
    if args.load:
        train = UDDataset.from_mappings(os.path.join(os.path.dirname(args.load[0]), "mappings.pkl"))
    else:
        train = UDDatasetMerged([UDDataset(path, args, treebank_id=i if args.treebank_ids else None) for i, path in enumerate(args.train)])
        train.save_mappings(os.path.join(args.logdir, "mappings.pkl"))
    devs = [UDDataset(path, args, treebank_id=i if args.treebank_ids else None, train_dataset=train) for i, path in enumerate(args.dev)]
    tests = [UDDataset(path, args, treebank_id=i if args.treebank_ids else None, train_dataset=train) for i, path in enumerate(args.test)]

    # Create the model
    model = LatinPipeModel(train, args)

    # Create the dataloaders
    if not args.load:
        train_dataloader = TorchUDDataLoader(TorchUDDataset(train, model.tokenizers, args, training=True), args)
    dev_dataloaders = [TorchUDDataLoader(TorchUDDataset(dataset, model.tokenizers, args, training=False), args) for dataset in devs]
    test_dataloaders = [TorchUDDataLoader(TorchUDDataset(dataset, model.tokenizers, args, training=False), args) for dataset in tests]

    # Perform prediction if requested
    if args.load:
        if len(args.load) > 1:
            model = LatinPipeModelEnsemble(model, args)
        for dataloader in dev_dataloaders:
            model.evaluate(dataloader, save_as=os.path.splitext(
                os.path.join(args.exp, os.path.basename(dataloader.dataset.ud_dataset.path)) if args.exp else dataloader.dataset.ud_dataset.path
            )[0] + ".predicted.conllu")
        for dataloader in test_dataloaders:
            model.predict(dataloader, save_as=os.path.splitext(
                os.path.join(args.exp, os.path.basename(dataloader.dataset.ud_dataset.path)) if args.exp else dataloader.dataset.ud_dataset.path
            )[0] + ".predicted.conllu")
        return

    # Train the model
    class Evaluator(keras.callbacks.Callback):
        def __init__(self, wandb_log):
            super().__init__()
            self._wandb_log = wandb_log
            self._metrics = [["", "Lemmas", "UPOS", "XPOS", "UFeats"][tag] for tag in args.tags] + (["UAS", "LAS"] if args.parse else [])

        def on_epoch_end(self, epoch, logs=None):
            logs["learning_rate"] = keras.ops.convert_to_numpy(model.optimizer.learning_rate)
            for dataloader in dev_dataloaders + (test_dataloaders if epoch + 1 == args.epochs + args.epochs_frozen else []):
                _, metrics = model.evaluate(dataloader, save_as=os.path.splitext(
                    os.path.join(args.logdir, os.path.basename(dataloader.dataset.ud_dataset.path))
                )[0] + ".{:02d}.conllu".format(epoch + 1))
                for metric, score in metrics.items():
                    if metric in self._metrics:
                        logs["{}_{}".format(os.path.splitext(os.path.basename(dataloader.dataset.ud_dataset.path))[0], metric)] = 100 * score.f1

            aggregations = {"la_ud213": [("la_ittb-ud", 390_787), ("la_llct-ud", 194_143), ("la_proiel-ud", 177_558),
                                         ("la_udante-ud", 30_450), ("la_perseus-ud", 16_486)]}
            for split in ["dev", "test"]:
                for metric in self._metrics:
                    for aggregation, parts in aggregations.items():
                        values = [logs.get("{}-{}_{}".format(part, split, metric), None) for part, _ in parts]
                        if all(value is not None for value in values):
                            logs["{}-{}_{}".format(aggregation, split, metric)] = np.mean(values)
                            logs["{}-sqrt-{}_{}".format(aggregation, split, metric)] = np.average(values, weights=[size**0.5 for _, size in parts])

            if self._wandb_log:
                self._wandb_log(logs, step=epoch + 1, commit=True)

    wandb_log = None
    if args.wandb:
        import wandb
        wandb.init(project="ufal-evalatin2024", name=args.exp, config=vars(args))
        wandb_log = wandb.log
    evaluator = Evaluator(wandb_log)
    if args.epochs_frozen:
        model.compile(len(train_dataloader), frozen=True)
        model.fit(train_dataloader, epochs=args.epochs_frozen, verbose=args.verbose, callbacks=[evaluator])
    if args.epochs:
        model.compile(len(train_dataloader), frozen=False)
        model.fit(train_dataloader, initial_epoch=args.epochs_frozen, epochs=args.epochs_frozen + args.epochs, verbose=args.verbose, callbacks=[evaluator])
    if args.save_checkpoint:
        model.save_weights(os.path.join(args.logdir, "model.weights.h5"))


if __name__ == "__main__":
    main([] if "__file__" not in globals() else None)