File size: 16,054 Bytes
ec63fa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0acff23
ec63fa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243d1d8
ec63fa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab3c82e
 
 
 
 
 
ec63fa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import sys, os, datetime, random, base64, time
import streamlit as st
import streamlit.components.v1 as components
from tempfile import mkdtemp
from pathlib import Path
import pandas as pd
from huggingface_hub import hf_hub_download

#-----Initial Parameters----

# Must be always False in production. When DEBUG is set to True the interface do not call the parser. Mode to debug interface features in local development.   
DEBUG=False
# Embedding model. Options are: 'bert-base-portuguese-cased' or 'bert-base-multilingual-uncased'
MODEL='bert-base-portuguese-cased'


#-----Fuctions-----

# Format external files for interface compatibility
def img_to_bytes(img_path):
    img_bytes = Path(img_path).read_bytes()
    encoded = base64.b64encode(img_bytes).decode()
    return encoded

def img_to_html(img_path, img_style='max-width: 100%;'):
    img_html = f"<img src='data:image/png;base64,{img_to_bytes(img_path)}' style='{img_style}'>"
    return img_html

# Call parser steps
def make_sentences(path_raw_text, path_text):
    try:
        #st.text(f'python ./src/portSentencer/portSent.py -o {path_text} -r -l 2048 {path_raw_text}')
        outcome = os.system(f'python ./src/portSentencer/portSent.py -o {path_text} -r -l 2048 {path_raw_text}')
        return f'S'+str(outcome)
    except Exception as e:
        return str(e)

def make_conllu(path_text, path_empty_conllu):
    try:
        outcome = os.system(f'python ./src/portTokenizer/portTok.py -o {path_empty_conllu} -m -s S000000 {path_text}')
        return 'T'+str(outcome)
    except Exception as e:
        return str(e)
        
def make_pred(path_empty_conllu, target_directory, model):
    try:
        outcome = os.system(f'python ./src/evalatin2024-latinpipe/latinpipe_evalatin24.py --load {model} --exp {target_directory} --test {path_empty_conllu}')
        return f'P'+str(outcome)
    except Exception as e:
        return str(e)

def make_postproc(path_predicted_conllu, path_final_conllu):
    try:
        outcome = os.system(f'python ./src/postproc/postprocess.py -o {path_final_conllu} {path_predicted_conllu}')
        return f'F'+str(outcome)
    except Exception as e:
        return str(e)

def get_predictions(path_prediction):
    try:
        with open(path_prediction, 'r') as f:
            st.text(f.read())
    except Exception as e:
        st.text('Resposta: '+e)


def run_pipeline(tmp_dir,code):

    path_text             = tmp_dir+"/"+code+"_input.txt"
    path_empty_conllu     = tmp_dir+"/"+code+"_input.conllu"
    #path_predicted_annot  = './src/annotation/'+code+'_input.predicted.conllu'
    path_predicted_conllu = tmp_dir+"/"+code+"_input.predicted.conllu"
    path_final_conllu     = tmp_dir+"/"+code+"_parsed.conllu"
    #model = '../Portparser.v2-latinpipe-core/model.weights.h5'
    model = hf_hub_download(repo_id="lucelene/Portparser.v2-latinpipe-core",
                            filename="model.weights.h5",
                            repo_type="model")
    model_op = hf_hub_download(repo_id="lucelene/Portparser.v2-latinpipe-core",
                               filename="options.json",
                               repo_type="model")
    model_mks = hf_hub_download(repo_id="lucelene/Portparser.v2-latinpipe-core",
                               filename="mappings.pkl",
                               repo_type="model")
    print("links", model, model_op)

#    with st.spinner(f'Tok {path_text} into {path_empty_conllu}'): 
    with st.spinner('Generating CoNLL-U...'): 
        #time.sleep(1)
        try:
            outcome = make_conllu(path_text, path_empty_conllu)
            #st.write("Tok executou!")
            #time.sleep(10)
        except Exception as e:
            st.write("Tok: "+e)
            time.sleep(10)
#    with st.spinner(f'{outcome} - Pred {path_empty_conllu} with {model} into {path_predicted_conllu}'): 
    with st.spinner('Predicting annotation...'): 
        #time.sleep(1)
        try:
            outcome = make_pred(path_empty_conllu, tmp_dir, model)
            #st.write("Pred executou!")
            #time.sleep(10)
        except Exception as e:
            st.write("Pred: "+e)
            time.sleep(10)
        #infile = open(path_predicted_conllu, "r")
        #empFile = infile.read()
        #infile.close()
    #with st.spinner(path_predicted_conllu+"\n"+empFile):
        #time.sleep(10)
#    with st.spinner(f'{outcome} - Post {path_predicted_conllu} into {path_final_conllu}'): 
    with st.spinner('Postprocessing...'): 
        #time.sleep(1)
        try:
            outcome = make_postproc(path_predicted_conllu, path_final_conllu)
            #st.write("Postp executou!")
            #time.sleep(10)
        except Exception as e:
            st.write("Postp: "+e)
            time.sleep(10)
#    with st.spinner(f'{outcome} - Done at {path_final_conllu}'):
    with st.spinner('Parsed!'):
        #infile = open(path_final_conllu, "r")
        #empFile = infile.read()
        #infile.close()
        time.sleep(1)
    return path_final_conllu

#-----Main Stuff-----
print("Running the HF server...")
print(f"Python version: {sys.version_info.major}.{sys.version_info.minor}")
tmp_dir = mkdtemp()
#print(tmp_dir)
code = f'{datetime.datetime.now().strftime("%d%m%Y_%H%M%S%f")+"_"+str(random.randint(0, 9))}'
#print(code)
work_dir = './temp/'
os.chdir('.')
path_text = f'{tmp_dir}/{code}_input.txt'
path_final_conllu = f'{work_dir}parsed.conllu' # default to display
area=0
with open(path_final_conllu, 'r', encoding='utf-8') as f:content = f.read().split('\n')

#-----Interface-----
with open('./src/arborator-draft/arborator-draft.css','rb') as f: arborator_css = f.read().decode()
with open('./src/style.css') as f: css = f.read()

st.set_page_config(page_title='Portparser v.2', layout="wide")
st.markdown(f'<style>{css}</style>', unsafe_allow_html=True)

# Grid
rowall = st.columns([2,26,2])
with rowall[1]:
    row2 = st.columns([6,4])
    # Head
    with row2[0]:
        st.markdown("<p id='logo-position'><b id='logo-title'><i>Portparser</i></b><b id='logo-version'>v.2</b><br><b id='logo-subtitle'>A parsing model for Brazilian Portuguese</b></p>",unsafe_allow_html=True)
        st.markdown("<p class='text'> This is Portparser, a parsing model for Brazilian Portuguese that follows the <a href='https://universaldependencies.org/'>Universal Dependencies (UD)</a> framework.\
        We built our model by using a recently released manually annotated corpus, the Porttinari-base, \
        and we explored different parsing methods and parameters for training. We also test multiple embedding models and parsing methods. \
        Portparser is the result of the best combination achieved in our experiments.</p><p class='text'>This model (version 2) is an evolution of the work previously reported \
        by <a href='https://aclanthology.org/2024.propor-1.41/'>Lopes and Pardo (2024)</a>, and all datasets and full instructions to reproduce our experiments are\
        freely available at the <a href='https://github.com/LuceleneL/Portparser.v2'>Portparser v2 repository</a>. More details about this work may also be found at \
        the <a href='https://sites.google.com/icmc.usp.br/poetisa'>POeTiSA project webpage</a>.</p>",unsafe_allow_html=True)
        with st.expander('To cite Portparser', expanded=False):
            st.code("""
            @inproceedings{lopes2024towards,
                title={Towards Portparser-a highly accurate parsing system for Brazilian Portuguese following the Universal Dependencies framework},
                author={Lopes, Lucelene and Pardo, Thiago},
                booktitle={Proceedings of the 16th International Conference on Computational Processing of Portuguese},
                pages={401--410},
                year={2024}
            }""")
    with row2[1]:
        st.markdown(img_to_html('./src/img/wordcloud_brasil5.png','width:100%; object-position: center top;'), unsafe_allow_html=True)
    # Mode to parse sentence 
    mode1, mode2 = st.tabs(['Single sentence', 'Multiple sentences'])
    # 'Single sentence'
    with mode1:
        rowmode1 = st.columns([1,28,1])
        with rowmode1[1]:
            st.write('Write a sentence and run to parse:')
            with st.form("parser"):
                text = st.text_input('Text: ')+' '
                #print("TEXTO",text,"TEXTO")
                #model_selected = MODEL+'-last4'
                submit = st.form_submit_button('Run')
            tab3, tab2, tab1 = st.tabs(["Tree","Table","CoNLL-U"])
            #with open(path_prediction, 'r', encoding='utf-8') as f: content = f.read()
            if submit:
                if not text.strip(): st.text("Can not parse empty text. Write a text above to parse.")                
                else:
                    try:
                        with open(path_text,'w',encoding='utf-8') as f: f.write(text)
                        if not DEBUG: path_final_conllu = run_pipeline(tmp_dir,code)
                        area=650
                        with open(path_final_conllu, 'r', encoding='utf-8') as f:
                            content = f.read()
                            tab1.text(content)
                            content = content.split('\n')
                            table = pd.DataFrame([line.split('\t') for line in content[2:]])
                            table.columns = ['ID','FORM','LEMMA','UPOS','XPOS','FEATS','HEAD','DEPREL','DEPS','MISC']
                            tab2.dataframe(table[:-2], use_container_width=True,hide_index=True)
                    except Exception as e:
                            st.text('Não deu certo a predição.'+str(e)+repr(e))
            with tab3:
                # Prepare UD tree
                content_str = '\n'.join(content)
                components.html(
                '<style>'+open('./src/arborator-draft/arborator-draft.css','rb').read().decode()+'</style>'+
                #'<style>{arborator_css}</style>'+
                """
                <script language="JavaScript" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.10.0/d3.js"></script>
                <script src="https://code.jquery.com/jquery-3.2.1.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
                """+
                '<script>'+open('./src/arborator-draft/arborator-draft.js','rb').read().decode()+'</script>'+
                f'<conll>{content_str}</conll>'+
                '<script>new ArboratorDraft();</script>',height=area)

    # 'Multiple sentences'
    with mode2:
        rowmode2 = st.columns([1,13,1,14,1])
        predictions = False
        with rowmode2[1]:
            explanation  = 'To analyze several sentences at the same time, upload a text file. Your text must be in txt format (UTF-8). \
            If your text contains one sentence per line, select the "already segmented, ready to be parsed" option. \
            If your text contains several sentences in the same segment, select the "segment the text before parsing" option.'
            option1, option2 = 'already segmented, ready to be parsed','segment the text before parsing'
            split_option = st.radio(explanation,[option1,option2])
        with rowmode2[3]:
            with st.form("uploadfile_parser"):
                uploaded_file = st.file_uploader("Choose a file")
                submit = st.form_submit_button('Run')
            if submit:
                if uploaded_file is not None:
                    # Segment text first 
                    if split_option==option2:
                        path_raw_text = path_text[:-4]+'_raw.txt'
                        with open(path_raw_text, 'w') as f: f.write(uploaded_file.read().decode('utf-8'))
                        outcome = make_sentences(path_raw_text, path_text)
                    # Do not segment text first    
                    else:
                        with open(path_text,'w', encoding="utf-8") as f:f.write(uploaded_file.read().decode('utf-8')+' ')
                    if not DEBUG: path_final_conllu = run_pipeline(tmp_dir,code)
                    st.download_button( 
                        label="Download predictions",
                        data=open(path_final_conllu, 'r', encoding='utf-8').read(),
                        file_name='portparser_generated.conllu')
                    predictions = True
                else:
                    st.text('Submit a text file to parse.')
        if predictions:
            row1mode2 = st.columns([1,28,1])
            with row1mode2[1]:
                tab1mode2, tab2mode2 = st.tabs(["Sentences","CoNLL-U"])
                tab1mode2.text(open(path_text,"r").read())
                tab2mode2.text(open(path_final_conllu,"r").read())

    # Foot
    with st.container():
        logorow1 = st.columns([7,4,1,4,1,4,7])
        with logorow1[1]:      
            st.markdown("<a href='https://www.icmc.usp.br/'>"+img_to_html('./src/img/icmc.png')+"</a>",unsafe_allow_html=True)
        with logorow1[3]:      
            st.markdown("<a href='https://c4ai.inova.usp.br/pt/inicio/'>"+img_to_html('./src/img/c4ia.png')+"</a>",unsafe_allow_html=True)
        with logorow1[5]:
            st.markdown("<a href='https://sites.google.com/view/nilc-usp/'>"+img_to_html('./src/img/nilc-removebg.png','max-width:80%')+"</a>",unsafe_allow_html=True)
        logorow2 = st.columns([7,4,1,4,1,5,7])
        with logorow2[1]:      
            st.markdown("<a href='https://inova.usp.br/'>"+img_to_html('./src/img/inova_nobackground.png')+"</a>",unsafe_allow_html=True)
        with logorow2[3]:
            st.markdown("<a href='https://softex.br/'>" + img_to_html('./src/img/softex_nobackground.png') + "</a>",unsafe_allow_html=True)
        with logorow2[5]:      
            st.markdown("<a href='https://www.gov.br/mcti/pt-br'>" + img_to_html('./src/img/mcti_nobackground.png') + "</a>",unsafe_allow_html=True)
        logorow3 = st.columns([7,4,1,4,1,4,7])
        with logorow3[3]:      
            st.markdown("<a href='https://www.motorola.com.br/'>"+img_to_html('./src/img/motorola_nobackground.png', 'max-width:70%; object-position: center bottom')+"</a>",unsafe_allow_html=True)
        creditrow = st.columns([7,14,7])
        with creditrow[1]:      
            st.markdown('<p style="text-align: center;margin-top:10px"> Developed by Lucelene Lopes\
            <a href="https://github.com/LuceleneL"><svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor" class="bi bi-github" viewBox="0 0 16 16">\
            <path d="M8 0C3.58 0 0 3.58 0 8c0 3.54 2.29 6.53 5.47 7.59.4.07.55-.17.55-.38 0-.19-.01-.82-.01-1.49-2.01.37-2.53-.49-2.69-.94-.09-.23-.48-.94-.82-1.13-.28-.15-.68-.52-.01-.53.63-.01 1.08.58 1.23.82.72 1.21 1.87.87 2.33.66.07-.52.28-.87.51-1.07-1.78-.2-3.64-.89-3.64-3.95 0-.87.31-1.59.82-2.15-.08-.2-.36-1.02.08-2.12 0 0 .67-.21 2.2.82.64-.18 1.32-.27 2-.27s1.36.09 2 .27c1.53-1.04 2.2-.82 2.2-.82.44 1.1.16 1.92.08 2.12.51.56.82 1.27.82 2.15 0 3.07-1.87 3.75-3.65 3.95.29.25.54.73.54 1.48 0 1.07-.01 1.93-.01 2.2 0 .21.15.46.55.38A8.01 8.01 0 0 0 16 8c0-4.42-3.58-8-8-8"/>\
            </svg></i></a><br>Interface by Ana Carolina Rodrigues\
            <a href="https://github.com/anasampa"><svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor" class="bi bi-github" viewBox="0 0 16 16">\
            <path d="M8 0C3.58 0 0 3.58 0 8c0 3.54 2.29 6.53 5.47 7.59.4.07.55-.17.55-.38 0-.19-.01-.82-.01-1.49-2.01.37-2.53-.49-2.69-.94-.09-.23-.48-.94-.82-1.13-.28-.15-.68-.52-.01-.53.63-.01 1.08.58 1.23.82.72 1.21 1.87.87 2.33.66.07-.52.28-.87.51-1.07-1.78-.2-3.64-.89-3.64-3.95 0-.87.31-1.59.82-2.15-.08-.2-.36-1.02.08-2.12 0 0 .67-.21 2.2.82.64-.18 1.32-.27 2-.27s1.36.09 2 .27c1.53-1.04 2.2-.82 2.2-.82.44 1.1.16 1.92.08 2.12.51.56.82 1.27.82 2.15 0 3.07-1.87 3.75-3.65 3.95.29.25.54.73.54 1.48 0 1.07-.01 1.93-.01 2.2 0 .21.15.46.55.38A8.01 8.01 0 0 0 16 8c0-4.42-3.58-8-8-8"/>\
            </svg></i></a></p>',unsafe_allow_html=True)