Spaces:
Running
Running
File size: 16,054 Bytes
ec63fa6 0acff23 ec63fa6 243d1d8 ec63fa6 ab3c82e ec63fa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import sys, os, datetime, random, base64, time
import streamlit as st
import streamlit.components.v1 as components
from tempfile import mkdtemp
from pathlib import Path
import pandas as pd
from huggingface_hub import hf_hub_download
#-----Initial Parameters----
# Must be always False in production. When DEBUG is set to True the interface do not call the parser. Mode to debug interface features in local development.
DEBUG=False
# Embedding model. Options are: 'bert-base-portuguese-cased' or 'bert-base-multilingual-uncased'
MODEL='bert-base-portuguese-cased'
#-----Fuctions-----
# Format external files for interface compatibility
def img_to_bytes(img_path):
img_bytes = Path(img_path).read_bytes()
encoded = base64.b64encode(img_bytes).decode()
return encoded
def img_to_html(img_path, img_style='max-width: 100%;'):
img_html = f"<img src='data:image/png;base64,{img_to_bytes(img_path)}' style='{img_style}'>"
return img_html
# Call parser steps
def make_sentences(path_raw_text, path_text):
try:
#st.text(f'python ./src/portSentencer/portSent.py -o {path_text} -r -l 2048 {path_raw_text}')
outcome = os.system(f'python ./src/portSentencer/portSent.py -o {path_text} -r -l 2048 {path_raw_text}')
return f'S'+str(outcome)
except Exception as e:
return str(e)
def make_conllu(path_text, path_empty_conllu):
try:
outcome = os.system(f'python ./src/portTokenizer/portTok.py -o {path_empty_conllu} -m -s S000000 {path_text}')
return 'T'+str(outcome)
except Exception as e:
return str(e)
def make_pred(path_empty_conllu, target_directory, model):
try:
outcome = os.system(f'python ./src/evalatin2024-latinpipe/latinpipe_evalatin24.py --load {model} --exp {target_directory} --test {path_empty_conllu}')
return f'P'+str(outcome)
except Exception as e:
return str(e)
def make_postproc(path_predicted_conllu, path_final_conllu):
try:
outcome = os.system(f'python ./src/postproc/postprocess.py -o {path_final_conllu} {path_predicted_conllu}')
return f'F'+str(outcome)
except Exception as e:
return str(e)
def get_predictions(path_prediction):
try:
with open(path_prediction, 'r') as f:
st.text(f.read())
except Exception as e:
st.text('Resposta: '+e)
def run_pipeline(tmp_dir,code):
path_text = tmp_dir+"/"+code+"_input.txt"
path_empty_conllu = tmp_dir+"/"+code+"_input.conllu"
#path_predicted_annot = './src/annotation/'+code+'_input.predicted.conllu'
path_predicted_conllu = tmp_dir+"/"+code+"_input.predicted.conllu"
path_final_conllu = tmp_dir+"/"+code+"_parsed.conllu"
#model = '../Portparser.v2-latinpipe-core/model.weights.h5'
model = hf_hub_download(repo_id="lucelene/Portparser.v2-latinpipe-core",
filename="model.weights.h5",
repo_type="model")
model_op = hf_hub_download(repo_id="lucelene/Portparser.v2-latinpipe-core",
filename="options.json",
repo_type="model")
model_mks = hf_hub_download(repo_id="lucelene/Portparser.v2-latinpipe-core",
filename="mappings.pkl",
repo_type="model")
print("links", model, model_op)
# with st.spinner(f'Tok {path_text} into {path_empty_conllu}'):
with st.spinner('Generating CoNLL-U...'):
#time.sleep(1)
try:
outcome = make_conllu(path_text, path_empty_conllu)
#st.write("Tok executou!")
#time.sleep(10)
except Exception as e:
st.write("Tok: "+e)
time.sleep(10)
# with st.spinner(f'{outcome} - Pred {path_empty_conllu} with {model} into {path_predicted_conllu}'):
with st.spinner('Predicting annotation...'):
#time.sleep(1)
try:
outcome = make_pred(path_empty_conllu, tmp_dir, model)
#st.write("Pred executou!")
#time.sleep(10)
except Exception as e:
st.write("Pred: "+e)
time.sleep(10)
#infile = open(path_predicted_conllu, "r")
#empFile = infile.read()
#infile.close()
#with st.spinner(path_predicted_conllu+"\n"+empFile):
#time.sleep(10)
# with st.spinner(f'{outcome} - Post {path_predicted_conllu} into {path_final_conllu}'):
with st.spinner('Postprocessing...'):
#time.sleep(1)
try:
outcome = make_postproc(path_predicted_conllu, path_final_conllu)
#st.write("Postp executou!")
#time.sleep(10)
except Exception as e:
st.write("Postp: "+e)
time.sleep(10)
# with st.spinner(f'{outcome} - Done at {path_final_conllu}'):
with st.spinner('Parsed!'):
#infile = open(path_final_conllu, "r")
#empFile = infile.read()
#infile.close()
time.sleep(1)
return path_final_conllu
#-----Main Stuff-----
print("Running the HF server...")
print(f"Python version: {sys.version_info.major}.{sys.version_info.minor}")
tmp_dir = mkdtemp()
#print(tmp_dir)
code = f'{datetime.datetime.now().strftime("%d%m%Y_%H%M%S%f")+"_"+str(random.randint(0, 9))}'
#print(code)
work_dir = './temp/'
os.chdir('.')
path_text = f'{tmp_dir}/{code}_input.txt'
path_final_conllu = f'{work_dir}parsed.conllu' # default to display
area=0
with open(path_final_conllu, 'r', encoding='utf-8') as f:content = f.read().split('\n')
#-----Interface-----
with open('./src/arborator-draft/arborator-draft.css','rb') as f: arborator_css = f.read().decode()
with open('./src/style.css') as f: css = f.read()
st.set_page_config(page_title='Portparser v.2', layout="wide")
st.markdown(f'<style>{css}</style>', unsafe_allow_html=True)
# Grid
rowall = st.columns([2,26,2])
with rowall[1]:
row2 = st.columns([6,4])
# Head
with row2[0]:
st.markdown("<p id='logo-position'><b id='logo-title'><i>Portparser</i></b><b id='logo-version'>v.2</b><br><b id='logo-subtitle'>A parsing model for Brazilian Portuguese</b></p>",unsafe_allow_html=True)
st.markdown("<p class='text'> This is Portparser, a parsing model for Brazilian Portuguese that follows the <a href='https://universaldependencies.org/'>Universal Dependencies (UD)</a> framework.\
We built our model by using a recently released manually annotated corpus, the Porttinari-base, \
and we explored different parsing methods and parameters for training. We also test multiple embedding models and parsing methods. \
Portparser is the result of the best combination achieved in our experiments.</p><p class='text'>This model (version 2) is an evolution of the work previously reported \
by <a href='https://aclanthology.org/2024.propor-1.41/'>Lopes and Pardo (2024)</a>, and all datasets and full instructions to reproduce our experiments are\
freely available at the <a href='https://github.com/LuceleneL/Portparser.v2'>Portparser v2 repository</a>. More details about this work may also be found at \
the <a href='https://sites.google.com/icmc.usp.br/poetisa'>POeTiSA project webpage</a>.</p>",unsafe_allow_html=True)
with st.expander('To cite Portparser', expanded=False):
st.code("""
@inproceedings{lopes2024towards,
title={Towards Portparser-a highly accurate parsing system for Brazilian Portuguese following the Universal Dependencies framework},
author={Lopes, Lucelene and Pardo, Thiago},
booktitle={Proceedings of the 16th International Conference on Computational Processing of Portuguese},
pages={401--410},
year={2024}
}""")
with row2[1]:
st.markdown(img_to_html('./src/img/wordcloud_brasil5.png','width:100%; object-position: center top;'), unsafe_allow_html=True)
# Mode to parse sentence
mode1, mode2 = st.tabs(['Single sentence', 'Multiple sentences'])
# 'Single sentence'
with mode1:
rowmode1 = st.columns([1,28,1])
with rowmode1[1]:
st.write('Write a sentence and run to parse:')
with st.form("parser"):
text = st.text_input('Text: ')+' '
#print("TEXTO",text,"TEXTO")
#model_selected = MODEL+'-last4'
submit = st.form_submit_button('Run')
tab3, tab2, tab1 = st.tabs(["Tree","Table","CoNLL-U"])
#with open(path_prediction, 'r', encoding='utf-8') as f: content = f.read()
if submit:
if not text.strip(): st.text("Can not parse empty text. Write a text above to parse.")
else:
try:
with open(path_text,'w',encoding='utf-8') as f: f.write(text)
if not DEBUG: path_final_conllu = run_pipeline(tmp_dir,code)
area=650
with open(path_final_conllu, 'r', encoding='utf-8') as f:
content = f.read()
tab1.text(content)
content = content.split('\n')
table = pd.DataFrame([line.split('\t') for line in content[2:]])
table.columns = ['ID','FORM','LEMMA','UPOS','XPOS','FEATS','HEAD','DEPREL','DEPS','MISC']
tab2.dataframe(table[:-2], use_container_width=True,hide_index=True)
except Exception as e:
st.text('Não deu certo a predição.'+str(e)+repr(e))
with tab3:
# Prepare UD tree
content_str = '\n'.join(content)
components.html(
'<style>'+open('./src/arborator-draft/arborator-draft.css','rb').read().decode()+'</style>'+
#'<style>{arborator_css}</style>'+
"""
<script language="JavaScript" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/d3/4.10.0/d3.js"></script>
<script src="https://code.jquery.com/jquery-3.2.1.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
"""+
'<script>'+open('./src/arborator-draft/arborator-draft.js','rb').read().decode()+'</script>'+
f'<conll>{content_str}</conll>'+
'<script>new ArboratorDraft();</script>',height=area)
# 'Multiple sentences'
with mode2:
rowmode2 = st.columns([1,13,1,14,1])
predictions = False
with rowmode2[1]:
explanation = 'To analyze several sentences at the same time, upload a text file. Your text must be in txt format (UTF-8). \
If your text contains one sentence per line, select the "already segmented, ready to be parsed" option. \
If your text contains several sentences in the same segment, select the "segment the text before parsing" option.'
option1, option2 = 'already segmented, ready to be parsed','segment the text before parsing'
split_option = st.radio(explanation,[option1,option2])
with rowmode2[3]:
with st.form("uploadfile_parser"):
uploaded_file = st.file_uploader("Choose a file")
submit = st.form_submit_button('Run')
if submit:
if uploaded_file is not None:
# Segment text first
if split_option==option2:
path_raw_text = path_text[:-4]+'_raw.txt'
with open(path_raw_text, 'w') as f: f.write(uploaded_file.read().decode('utf-8'))
outcome = make_sentences(path_raw_text, path_text)
# Do not segment text first
else:
with open(path_text,'w', encoding="utf-8") as f:f.write(uploaded_file.read().decode('utf-8')+' ')
if not DEBUG: path_final_conllu = run_pipeline(tmp_dir,code)
st.download_button(
label="Download predictions",
data=open(path_final_conllu, 'r', encoding='utf-8').read(),
file_name='portparser_generated.conllu')
predictions = True
else:
st.text('Submit a text file to parse.')
if predictions:
row1mode2 = st.columns([1,28,1])
with row1mode2[1]:
tab1mode2, tab2mode2 = st.tabs(["Sentences","CoNLL-U"])
tab1mode2.text(open(path_text,"r").read())
tab2mode2.text(open(path_final_conllu,"r").read())
# Foot
with st.container():
logorow1 = st.columns([7,4,1,4,1,4,7])
with logorow1[1]:
st.markdown("<a href='https://www.icmc.usp.br/'>"+img_to_html('./src/img/icmc.png')+"</a>",unsafe_allow_html=True)
with logorow1[3]:
st.markdown("<a href='https://c4ai.inova.usp.br/pt/inicio/'>"+img_to_html('./src/img/c4ia.png')+"</a>",unsafe_allow_html=True)
with logorow1[5]:
st.markdown("<a href='https://sites.google.com/view/nilc-usp/'>"+img_to_html('./src/img/nilc-removebg.png','max-width:80%')+"</a>",unsafe_allow_html=True)
logorow2 = st.columns([7,4,1,4,1,5,7])
with logorow2[1]:
st.markdown("<a href='https://inova.usp.br/'>"+img_to_html('./src/img/inova_nobackground.png')+"</a>",unsafe_allow_html=True)
with logorow2[3]:
st.markdown("<a href='https://softex.br/'>" + img_to_html('./src/img/softex_nobackground.png') + "</a>",unsafe_allow_html=True)
with logorow2[5]:
st.markdown("<a href='https://www.gov.br/mcti/pt-br'>" + img_to_html('./src/img/mcti_nobackground.png') + "</a>",unsafe_allow_html=True)
logorow3 = st.columns([7,4,1,4,1,4,7])
with logorow3[3]:
st.markdown("<a href='https://www.motorola.com.br/'>"+img_to_html('./src/img/motorola_nobackground.png', 'max-width:70%; object-position: center bottom')+"</a>",unsafe_allow_html=True)
creditrow = st.columns([7,14,7])
with creditrow[1]:
st.markdown('<p style="text-align: center;margin-top:10px"> Developed by Lucelene Lopes\
<a href="https://github.com/LuceleneL"><svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor" class="bi bi-github" viewBox="0 0 16 16">\
<path d="M8 0C3.58 0 0 3.58 0 8c0 3.54 2.29 6.53 5.47 7.59.4.07.55-.17.55-.38 0-.19-.01-.82-.01-1.49-2.01.37-2.53-.49-2.69-.94-.09-.23-.48-.94-.82-1.13-.28-.15-.68-.52-.01-.53.63-.01 1.08.58 1.23.82.72 1.21 1.87.87 2.33.66.07-.52.28-.87.51-1.07-1.78-.2-3.64-.89-3.64-3.95 0-.87.31-1.59.82-2.15-.08-.2-.36-1.02.08-2.12 0 0 .67-.21 2.2.82.64-.18 1.32-.27 2-.27s1.36.09 2 .27c1.53-1.04 2.2-.82 2.2-.82.44 1.1.16 1.92.08 2.12.51.56.82 1.27.82 2.15 0 3.07-1.87 3.75-3.65 3.95.29.25.54.73.54 1.48 0 1.07-.01 1.93-.01 2.2 0 .21.15.46.55.38A8.01 8.01 0 0 0 16 8c0-4.42-3.58-8-8-8"/>\
</svg></i></a><br>Interface by Ana Carolina Rodrigues\
<a href="https://github.com/anasampa"><svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor" class="bi bi-github" viewBox="0 0 16 16">\
<path d="M8 0C3.58 0 0 3.58 0 8c0 3.54 2.29 6.53 5.47 7.59.4.07.55-.17.55-.38 0-.19-.01-.82-.01-1.49-2.01.37-2.53-.49-2.69-.94-.09-.23-.48-.94-.82-1.13-.28-.15-.68-.52-.01-.53.63-.01 1.08.58 1.23.82.72 1.21 1.87.87 2.33.66.07-.52.28-.87.51-1.07-1.78-.2-3.64-.89-3.64-3.95 0-.87.31-1.59.82-2.15-.08-.2-.36-1.02.08-2.12 0 0 .67-.21 2.2.82.64-.18 1.32-.27 2-.27s1.36.09 2 .27c1.53-1.04 2.2-.82 2.2-.82.44 1.1.16 1.92.08 2.12.51.56.82 1.27.82 2.15 0 3.07-1.87 3.75-3.65 3.95.29.25.54.73.54 1.48 0 1.07-.01 1.93-.01 2.2 0 .21.15.46.55.38A8.01 8.01 0 0 0 16 8c0-4.42-3.58-8-8-8"/>\
</svg></i></a></p>',unsafe_allow_html=True)
|