Spaces:
Sleeping
Sleeping
Commit
·
450a421
1
Parent(s):
c1f9b9f
Initial commit
Browse files- app.py +218 -0
- requirements.txt +7 -0
app.py
ADDED
|
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import numpy as np
|
| 4 |
+
from scipy.special import expit
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 6 |
+
from PyPDF2 import PdfReader
|
| 7 |
+
from docx import Document
|
| 8 |
+
|
| 9 |
+
# Load Model and Tokenizer
|
| 10 |
+
|
| 11 |
+
MODEL = "cardiffnlp/tweet-topic-21-multi"
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
| 13 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
| 14 |
+
class_mapping = model.config.id2label
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
# Text Analyzer
|
| 18 |
+
|
| 19 |
+
def analyze_topics(text):
|
| 20 |
+
detected_topics = []
|
| 21 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
| 22 |
+
outputs = model(**inputs)
|
| 23 |
+
|
| 24 |
+
scores = outputs.logits[0].detach().numpy()
|
| 25 |
+
scores = expit(scores)
|
| 26 |
+
predictions = (scores >= 0.5).astype(int)
|
| 27 |
+
|
| 28 |
+
for i, pred in enumerate(predictions):
|
| 29 |
+
if pred:
|
| 30 |
+
topic_name = class_mapping[i]
|
| 31 |
+
confidence = scores[i]
|
| 32 |
+
detected_topics.append(f"• {topic_name} ({confidence:.2f})")
|
| 33 |
+
|
| 34 |
+
if detected_topics:
|
| 35 |
+
return "\n".join(detected_topics)
|
| 36 |
+
else:
|
| 37 |
+
return "No specific topics detected."
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# Document Analyzer Helpers
|
| 41 |
+
|
| 42 |
+
def extract_text_from_file(file_path):
|
| 43 |
+
ext = os.path.splitext(file_path)[1].lower()
|
| 44 |
+
|
| 45 |
+
if ext == ".pdf":
|
| 46 |
+
reader = PdfReader(file_path)
|
| 47 |
+
text = " ".join([page.extract_text() for page in reader.pages if page.extract_text()])
|
| 48 |
+
elif ext == ".docx":
|
| 49 |
+
doc = Document(file_path)
|
| 50 |
+
text = "\n".join([p.text for p in doc.paragraphs])
|
| 51 |
+
elif ext == ".txt":
|
| 52 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
| 53 |
+
text = f.read()
|
| 54 |
+
else:
|
| 55 |
+
raise ValueError("Unsupported file format. Please upload a PDF, DOCX, or TXT file.")
|
| 56 |
+
|
| 57 |
+
return text.strip()
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def analyze_document(file):
|
| 61 |
+
if file is None:
|
| 62 |
+
return "Please upload a document first."
|
| 63 |
+
|
| 64 |
+
text = extract_text_from_file(file.name)
|
| 65 |
+
if not text:
|
| 66 |
+
return "No readable text found in document."
|
| 67 |
+
|
| 68 |
+
# Split into chunks for large docs
|
| 69 |
+
words = text.split()
|
| 70 |
+
chunks = [" ".join(words[i:i + 400]) for i in range(0, len(words), 400)]
|
| 71 |
+
|
| 72 |
+
all_detected_topics = {}
|
| 73 |
+
|
| 74 |
+
for chunk in chunks:
|
| 75 |
+
inputs = tokenizer(chunk, return_tensors="pt", truncation=True, max_length=512)
|
| 76 |
+
outputs = model(**inputs)
|
| 77 |
+
scores = outputs.logits[0].detach().numpy()
|
| 78 |
+
scores = expit(scores)
|
| 79 |
+
predictions = (scores >= 0.5).astype(int)
|
| 80 |
+
|
| 81 |
+
for i, pred in enumerate(predictions):
|
| 82 |
+
if pred:
|
| 83 |
+
topic_name = class_mapping[i]
|
| 84 |
+
confidence = scores[i]
|
| 85 |
+
all_detected_topics.setdefault(topic_name, []).append(confidence)
|
| 86 |
+
|
| 87 |
+
if all_detected_topics:
|
| 88 |
+
summary = [
|
| 89 |
+
f"• {topic} (avg confidence: {np.mean(confs):.2f})"
|
| 90 |
+
for topic, confs in all_detected_topics.items()
|
| 91 |
+
]
|
| 92 |
+
summary.sort(key=lambda x: float(x.split(': ')[-1].rstrip(')')), reverse=True)
|
| 93 |
+
return "\n".join(summary)
|
| 94 |
+
else:
|
| 95 |
+
return "No specific topics detected in document."
|
| 96 |
+
css = """
|
| 97 |
+
/* --- Global Layout --- */
|
| 98 |
+
body {
|
| 99 |
+
background-color: #1a1a1a !important;
|
| 100 |
+
color: #f5f5f5 !important;
|
| 101 |
+
font-family: 'Inter', sans-serif !important;
|
| 102 |
+
margin: 0 !important;
|
| 103 |
+
padding: 0 !important;
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
/* Full width */
|
| 107 |
+
#root, .gradio-container, .main {
|
| 108 |
+
max-width: 100% !important;
|
| 109 |
+
width: 100% !important;
|
| 110 |
+
background-color: #1a1a1a !important;
|
| 111 |
+
margin: 0 !important;
|
| 112 |
+
padding: 0 !important;
|
| 113 |
+
border: none !important;
|
| 114 |
+
box-shadow: none !important;
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
/* Headings and Labels */
|
| 118 |
+
h1, h2, h3, label {
|
| 119 |
+
color: #ff9900 !important;
|
| 120 |
+
font-weight: 600 !important;
|
| 121 |
+
}
|
| 122 |
+
|
| 123 |
+
/* Text Inputs */
|
| 124 |
+
textarea, input {
|
| 125 |
+
background-color: #2a2a2a !important;
|
| 126 |
+
color: #f5f5f5 !important;
|
| 127 |
+
border: 1px solid #3a3a3a !important;
|
| 128 |
+
border-radius: 10px !important;
|
| 129 |
+
padding: 12px !important;
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
/* Buttons */
|
| 136 |
+
button {
|
| 137 |
+
background-color: #ff9900 !important;
|
| 138 |
+
color: #1a1a1a !important;
|
| 139 |
+
font-weight: 600 !important;
|
| 140 |
+
border-radius: 8px !important;
|
| 141 |
+
border: none !important;
|
| 142 |
+
padding: 8px 16px !important;
|
| 143 |
+
transition: 0.25s ease-in-out;
|
| 144 |
+
}
|
| 145 |
+
button:hover {
|
| 146 |
+
background-color: #ffb84d !important;
|
| 147 |
+
}
|
| 148 |
+
|
| 149 |
+
/* Output textbox */
|
| 150 |
+
.output-textbox {
|
| 151 |
+
background-color: #252525 !important;
|
| 152 |
+
color: #ffd480 !important;
|
| 153 |
+
border: 1px solid #3a3a3a !important;
|
| 154 |
+
border-radius: 10px !important;
|
| 155 |
+
box-shadow: inset 0 0 6px rgba(255,153,0,0.1);
|
| 156 |
+
}
|
| 157 |
+
|
| 158 |
+
/* Tabs */
|
| 159 |
+
.tabitem.svelte-1ipelgc {
|
| 160 |
+
background-color: #1a1a1a !important;
|
| 161 |
+
color: #ffb84d !important;
|
| 162 |
+
}
|
| 163 |
+
.tabitem.svelte-1ipelgc.selected {
|
| 164 |
+
background-color: #ff9900 !important;
|
| 165 |
+
color: #1a1a1a !important;
|
| 166 |
+
font-weight: 700 !important;
|
| 167 |
+
}
|
| 168 |
+
|
| 169 |
+
/* Footer */
|
| 170 |
+
.footer, .svelte-1xdkkgx, .wrap.svelte-1ipelgc {
|
| 171 |
+
background: none !important;
|
| 172 |
+
border: none !important;
|
| 173 |
+
box-shadow: none !important;
|
| 174 |
+
color: #888 !important;
|
| 175 |
+
text-align: center !important;
|
| 176 |
+
}
|
| 177 |
+
"""
|
| 178 |
+
|
| 179 |
+
# -------------------------
|
| 180 |
+
# Gradio Interface
|
| 181 |
+
# -------------------------
|
| 182 |
+
|
| 183 |
+
tweet_tab = gr.Interface(
|
| 184 |
+
fn=analyze_topics,
|
| 185 |
+
inputs=gr.Textbox(
|
| 186 |
+
label="📝 Enter Text",
|
| 187 |
+
placeholder="Type or paste text here...",
|
| 188 |
+
lines=4
|
| 189 |
+
),
|
| 190 |
+
outputs=gr.Textbox(label="🎯 Detected Topics"),
|
| 191 |
+
examples=[
|
| 192 |
+
["Just watched the new Marvel movie, it was amazing!"],
|
| 193 |
+
["Bitcoin prices are going up again!"],
|
| 194 |
+
["Climate change is affecting polar bears."],
|
| 195 |
+
],
|
| 196 |
+
title="💬 Text Topic Analyzer",
|
| 197 |
+
description="Analyze short texts or tweets to detect underlying topics using CardiffNLP’s Tweet Topic model.",
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
document_tab = gr.Interface(
|
| 201 |
+
fn=analyze_document,
|
| 202 |
+
inputs=gr.File(label="📄 Upload Document (PDF, DOCX, or TXT)"),
|
| 203 |
+
outputs=gr.Textbox(label="📘 Detected Topics"),
|
| 204 |
+
title="📄 Document Topic Analyzer",
|
| 205 |
+
description="Upload a document and let the AI detect key topics discussed inside.",
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
app = gr.TabbedInterface(
|
| 209 |
+
[tweet_tab, document_tab],
|
| 210 |
+
["💬 Text Analyzer", "📄 Document Analyzer"],
|
| 211 |
+
title="🧠 AI Topic Analyzer",
|
| 212 |
+
css=css,
|
| 213 |
+
theme=gr.themes.Base(primary_hue="orange", secondary_hue="orange"),
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
if __name__ == "__main__":
|
| 217 |
+
app.launch()
|
| 218 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.0.0
|
| 2 |
+
transformers>=4.30.0
|
| 3 |
+
torch>=2.0.0
|
| 4 |
+
numpy>=1.21.0
|
| 5 |
+
scipy>=1.7.0
|
| 6 |
+
PyPDF2>=3.0.0
|
| 7 |
+
python-docx>=0.8.11
|