Spaces:
Sleeping
Sleeping
Upload 11 files
Browse files- .gitattributes +1 -0
- app.py +78 -0
- examples/car.jpg +0 -0
- examples/iMAC.jpg +0 -0
- examples/pig.jpg +0 -0
- examples/statue.png +3 -0
- gitattributes +35 -0
- inference.py +49 -0
- paths.py +4 -0
- requirements.txt +10 -0
- utils.py +304 -0
- vision_tower.py +161 -0
.gitattributes
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
examples/statue.png filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from paths import *
|
| 3 |
+
import os
|
| 4 |
+
from vision_tower import DINOv2_MLP
|
| 5 |
+
from transformers import AutoImageProcessor
|
| 6 |
+
import torch
|
| 7 |
+
from inference import *
|
| 8 |
+
from utils import *
|
| 9 |
+
|
| 10 |
+
from huggingface_hub import hf_hub_download
|
| 11 |
+
ckpt_path = hf_hub_download(repo_id="Viglong/Orient-Anything", filename="ronormsigma1/dino_weight.pt", repo_type="model", cache_dir='./', resume_download=True)
|
| 12 |
+
print(ckpt_path)
|
| 13 |
+
|
| 14 |
+
save_path = './'
|
| 15 |
+
device = 'cpu'
|
| 16 |
+
dino = DINOv2_MLP(
|
| 17 |
+
dino_mode = 'large',
|
| 18 |
+
in_dim = 1024,
|
| 19 |
+
out_dim = 360+180+360+2,
|
| 20 |
+
evaluate = True,
|
| 21 |
+
mask_dino = False,
|
| 22 |
+
frozen_back = False
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
dino.eval()
|
| 26 |
+
print('model create')
|
| 27 |
+
dino.load_state_dict(torch.load(ckpt_path, map_location='cpu'))
|
| 28 |
+
dino = dino.to(device)
|
| 29 |
+
print('weight loaded')
|
| 30 |
+
val_preprocess = AutoImageProcessor.from_pretrained(DINO_LARGE, cache_dir='./')
|
| 31 |
+
|
| 32 |
+
def infer_func(img, do_rm_bkg=True, do_infer_aug=False):
|
| 33 |
+
origin_img = Image.fromarray(img)
|
| 34 |
+
if do_infer_aug:
|
| 35 |
+
rm_bkg_img = background_preprocess(origin_img, True)
|
| 36 |
+
angles = get_3angle_infer_aug(origin_img, rm_bkg_img, dino, val_preprocess, device)
|
| 37 |
+
else:
|
| 38 |
+
rm_bkg_img = background_preprocess(origin_img, do_rm_bkg)
|
| 39 |
+
angles = get_3angle(rm_bkg_img, dino, val_preprocess, device)
|
| 40 |
+
|
| 41 |
+
phi = np.radians(angles[0])
|
| 42 |
+
theta = np.radians(angles[1])
|
| 43 |
+
gamma = angles[2]
|
| 44 |
+
confidence = float(angles[3])
|
| 45 |
+
if confidence > 0.5:
|
| 46 |
+
render_axis = render_3D_axis(phi, theta, gamma)
|
| 47 |
+
res_img = overlay_images_with_scaling(render_axis, rm_bkg_img)
|
| 48 |
+
else:
|
| 49 |
+
res_img = img
|
| 50 |
+
|
| 51 |
+
# axis_model = "axis.obj"
|
| 52 |
+
return [res_img, round(float(angles[0]), 2), round(float(angles[1]), 2), round(float(angles[2]), 2), round(float(angles[3]), 2)]
|
| 53 |
+
|
| 54 |
+
example_files = os.listdir('examples')
|
| 55 |
+
example_files.sort()
|
| 56 |
+
example_files = [[os.path.join('examples', filename), None, None] for filename in example_files]
|
| 57 |
+
print(example_files)
|
| 58 |
+
server = gr.Interface(
|
| 59 |
+
flagging_mode='never',
|
| 60 |
+
fn=infer_func,
|
| 61 |
+
examples=example_files,
|
| 62 |
+
cache_examples=False,
|
| 63 |
+
inputs=[
|
| 64 |
+
gr.Image(height=512, width=512, label="upload your image"),
|
| 65 |
+
gr.Checkbox(label="Remove Background", value=True),
|
| 66 |
+
gr.Checkbox(label="Inference time augmentation", value=False)
|
| 67 |
+
],
|
| 68 |
+
outputs=[
|
| 69 |
+
gr.Image(height=512, width=512, label="result image"),
|
| 70 |
+
# gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model"),
|
| 71 |
+
gr.Textbox(lines=1, label='Azimuth(0~360°) represents the position of the viewer in the xy plane'),
|
| 72 |
+
gr.Textbox(lines=1, label='Polar(-90~90°) indicating the height at which the viewer is located'),
|
| 73 |
+
gr.Textbox(lines=1, label='Rotation(-90~90°) represents the angle of rotation of the viewer'),
|
| 74 |
+
gr.Textbox(lines=1, label='Confidence(0~1) indicating whether the object has a meaningful orientation')
|
| 75 |
+
]
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
server.launch()
|
examples/car.jpg
ADDED
|
examples/iMAC.jpg
ADDED
|
examples/pig.jpg
ADDED
|
examples/statue.png
ADDED
|
Git LFS Details
|
gitattributes
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
inference.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from utils import *
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
def get_3angle(image, dino, val_preprocess, device):
|
| 8 |
+
|
| 9 |
+
# image = Image.open(image_path).convert('RGB')
|
| 10 |
+
image_inputs = val_preprocess(images = image)
|
| 11 |
+
image_inputs['pixel_values'] = torch.from_numpy(np.array(image_inputs['pixel_values'])).to(device)
|
| 12 |
+
with torch.no_grad():
|
| 13 |
+
dino_pred = dino(image_inputs)
|
| 14 |
+
|
| 15 |
+
gaus_ax_pred = torch.argmax(dino_pred[:, 0:360], dim=-1)
|
| 16 |
+
gaus_pl_pred = torch.argmax(dino_pred[:, 360:360+180], dim=-1)
|
| 17 |
+
gaus_ro_pred = torch.argmax(dino_pred[:, 360+180:360+180+360], dim=-1)
|
| 18 |
+
confidence = F.softmax(dino_pred[:, -2:], dim=-1)[0][0]
|
| 19 |
+
angles = torch.zeros(4)
|
| 20 |
+
angles[0] = gaus_ax_pred
|
| 21 |
+
angles[1] = gaus_pl_pred - 90
|
| 22 |
+
angles[2] = gaus_ro_pred - 180
|
| 23 |
+
angles[3] = confidence
|
| 24 |
+
return angles
|
| 25 |
+
|
| 26 |
+
def get_3angle_infer_aug(origin_img, rm_bkg_img, dino, val_preprocess, device):
|
| 27 |
+
|
| 28 |
+
# image = Image.open(image_path).convert('RGB')
|
| 29 |
+
image = get_crop_images(origin_img, num=3) + get_crop_images(rm_bkg_img, num=3)
|
| 30 |
+
image_inputs = val_preprocess(images = image)
|
| 31 |
+
image_inputs['pixel_values'] = torch.from_numpy(np.array(image_inputs['pixel_values'])).to(device)
|
| 32 |
+
with torch.no_grad():
|
| 33 |
+
dino_pred = dino(image_inputs)
|
| 34 |
+
|
| 35 |
+
gaus_ax_pred = torch.argmax(dino_pred[:, 0:360], dim=-1).to(torch.float32)
|
| 36 |
+
gaus_pl_pred = torch.argmax(dino_pred[:, 360:360+180], dim=-1).to(torch.float32)
|
| 37 |
+
gaus_ro_pred = torch.argmax(dino_pred[:, 360+180:360+180+360], dim=-1).to(torch.float32)
|
| 38 |
+
|
| 39 |
+
gaus_ax_pred = remove_outliers_and_average_circular(gaus_ax_pred)
|
| 40 |
+
gaus_pl_pred = remove_outliers_and_average(gaus_pl_pred)
|
| 41 |
+
gaus_ro_pred = remove_outliers_and_average(gaus_ro_pred)
|
| 42 |
+
|
| 43 |
+
confidence = torch.mean(F.softmax(dino_pred[:, -2:], dim=-1), dim=0)[0]
|
| 44 |
+
angles = torch.zeros(4)
|
| 45 |
+
angles[0] = gaus_ax_pred
|
| 46 |
+
angles[1] = gaus_pl_pred - 90
|
| 47 |
+
angles[2] = gaus_ro_pred - 180
|
| 48 |
+
angles[3] = confidence
|
| 49 |
+
return angles
|
paths.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
DINO_SMALL = "facebook/dinov2-small"
|
| 2 |
+
DINO_BASE = "facebook/dinov2-base"
|
| 3 |
+
DINO_LARGE = "facebook/dinov2-large"
|
| 4 |
+
DINO_GIANT = "facebook/dinov2-giant"
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==2.2.1
|
| 2 |
+
transformers==4.38
|
| 3 |
+
matplotlib
|
| 4 |
+
pillow==10.2.0
|
| 5 |
+
huggingface-hub==0.26.5
|
| 6 |
+
gradio==5.9.0
|
| 7 |
+
numpy==1.26.4
|
| 8 |
+
onnxruntime
|
| 9 |
+
rembg
|
| 10 |
+
pydantic==2.10.6
|
utils.py
ADDED
|
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import rembg
|
| 2 |
+
import random
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image, ImageOps
|
| 6 |
+
import PIL
|
| 7 |
+
from typing import Any
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
import io
|
| 10 |
+
|
| 11 |
+
def resize_foreground(
|
| 12 |
+
image: Image,
|
| 13 |
+
ratio: float,
|
| 14 |
+
) -> Image:
|
| 15 |
+
image = np.array(image)
|
| 16 |
+
assert image.shape[-1] == 4
|
| 17 |
+
alpha = np.where(image[..., 3] > 0)
|
| 18 |
+
y1, y2, x1, x2 = (
|
| 19 |
+
alpha[0].min(),
|
| 20 |
+
alpha[0].max(),
|
| 21 |
+
alpha[1].min(),
|
| 22 |
+
alpha[1].max(),
|
| 23 |
+
)
|
| 24 |
+
# crop the foreground
|
| 25 |
+
fg = image[y1:y2, x1:x2]
|
| 26 |
+
# pad to square
|
| 27 |
+
size = max(fg.shape[0], fg.shape[1])
|
| 28 |
+
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
|
| 29 |
+
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
|
| 30 |
+
new_image = np.pad(
|
| 31 |
+
fg,
|
| 32 |
+
((ph0, ph1), (pw0, pw1), (0, 0)),
|
| 33 |
+
mode="constant",
|
| 34 |
+
constant_values=((0, 0), (0, 0), (0, 0)),
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
# compute padding according to the ratio
|
| 38 |
+
new_size = int(new_image.shape[0] / ratio)
|
| 39 |
+
# pad to size, double side
|
| 40 |
+
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
|
| 41 |
+
ph1, pw1 = new_size - size - ph0, new_size - size - pw0
|
| 42 |
+
new_image = np.pad(
|
| 43 |
+
new_image,
|
| 44 |
+
((ph0, ph1), (pw0, pw1), (0, 0)),
|
| 45 |
+
mode="constant",
|
| 46 |
+
constant_values=((0, 0), (0, 0), (0, 0)),
|
| 47 |
+
)
|
| 48 |
+
new_image = Image.fromarray(new_image)
|
| 49 |
+
return new_image
|
| 50 |
+
|
| 51 |
+
def remove_background(image: Image,
|
| 52 |
+
rembg_session: Any = None,
|
| 53 |
+
force: bool = False,
|
| 54 |
+
**rembg_kwargs,
|
| 55 |
+
) -> Image:
|
| 56 |
+
do_remove = True
|
| 57 |
+
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
|
| 58 |
+
do_remove = False
|
| 59 |
+
do_remove = do_remove or force
|
| 60 |
+
if do_remove:
|
| 61 |
+
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
|
| 62 |
+
return image
|
| 63 |
+
|
| 64 |
+
def random_crop(image, crop_scale=(0.8, 0.95)):
|
| 65 |
+
"""
|
| 66 |
+
随机裁切图片
|
| 67 |
+
image (numpy.ndarray): (H, W, C)。
|
| 68 |
+
crop_scale (tuple): (min_scale, max_scale)。
|
| 69 |
+
"""
|
| 70 |
+
assert isinstance(image, Image.Image), "iput must be PIL.Image.Image"
|
| 71 |
+
assert len(crop_scale) == 2 and 0 < crop_scale[0] <= crop_scale[1] <= 1
|
| 72 |
+
|
| 73 |
+
width, height = image.size
|
| 74 |
+
|
| 75 |
+
# 计算裁切的高度和宽度
|
| 76 |
+
crop_width = random.randint(int(width * crop_scale[0]), int(width * crop_scale[1]))
|
| 77 |
+
crop_height = random.randint(int(height * crop_scale[0]), int(height * crop_scale[1]))
|
| 78 |
+
|
| 79 |
+
# 随机选择裁切的起始点
|
| 80 |
+
left = random.randint(0, width - crop_width)
|
| 81 |
+
top = random.randint(0, height - crop_height)
|
| 82 |
+
|
| 83 |
+
# 裁切图片
|
| 84 |
+
cropped_image = image.crop((left, top, left + crop_width, top + crop_height))
|
| 85 |
+
|
| 86 |
+
return cropped_image
|
| 87 |
+
|
| 88 |
+
def get_crop_images(img, num=3):
|
| 89 |
+
cropped_images = []
|
| 90 |
+
for i in range(num):
|
| 91 |
+
cropped_images.append(random_crop(img))
|
| 92 |
+
return cropped_images
|
| 93 |
+
|
| 94 |
+
def background_preprocess(input_image, do_remove_background):
|
| 95 |
+
|
| 96 |
+
rembg_session = rembg.new_session() if do_remove_background else None
|
| 97 |
+
|
| 98 |
+
if do_remove_background:
|
| 99 |
+
input_image = remove_background(input_image, rembg_session)
|
| 100 |
+
input_image = resize_foreground(input_image, 0.85)
|
| 101 |
+
|
| 102 |
+
return input_image
|
| 103 |
+
|
| 104 |
+
def remove_outliers_and_average(tensor, threshold=1.5):
|
| 105 |
+
assert tensor.dim() == 1, "dimension of input Tensor must equal to 1"
|
| 106 |
+
|
| 107 |
+
q1 = torch.quantile(tensor, 0.25)
|
| 108 |
+
q3 = torch.quantile(tensor, 0.75)
|
| 109 |
+
iqr = q3 - q1
|
| 110 |
+
|
| 111 |
+
lower_bound = q1 - threshold * iqr
|
| 112 |
+
upper_bound = q3 + threshold * iqr
|
| 113 |
+
|
| 114 |
+
non_outliers = tensor[(tensor >= lower_bound) & (tensor <= upper_bound)]
|
| 115 |
+
|
| 116 |
+
if len(non_outliers) == 0:
|
| 117 |
+
return tensor.mean().item()
|
| 118 |
+
|
| 119 |
+
return non_outliers.mean().item()
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def remove_outliers_and_average_circular(tensor, threshold=1.5):
|
| 123 |
+
assert tensor.dim() == 1, "dimension of input Tensor must equal to 1"
|
| 124 |
+
|
| 125 |
+
# 将角度转换为二维平面上的点
|
| 126 |
+
radians = tensor * torch.pi / 180.0
|
| 127 |
+
x_coords = torch.cos(radians)
|
| 128 |
+
y_coords = torch.sin(radians)
|
| 129 |
+
|
| 130 |
+
# 计算平均向量
|
| 131 |
+
mean_x = torch.mean(x_coords)
|
| 132 |
+
mean_y = torch.mean(y_coords)
|
| 133 |
+
|
| 134 |
+
differences = torch.sqrt((x_coords - mean_x) * (x_coords - mean_x) + (y_coords - mean_y) * (y_coords - mean_y))
|
| 135 |
+
|
| 136 |
+
# 计算四分位数和 IQR
|
| 137 |
+
q1 = torch.quantile(differences, 0.25)
|
| 138 |
+
q3 = torch.quantile(differences, 0.75)
|
| 139 |
+
iqr = q3 - q1
|
| 140 |
+
|
| 141 |
+
# 计算上下限
|
| 142 |
+
lower_bound = q1 - threshold * iqr
|
| 143 |
+
upper_bound = q3 + threshold * iqr
|
| 144 |
+
|
| 145 |
+
# 筛选非离群点
|
| 146 |
+
non_outliers = tensor[(differences >= lower_bound) & (differences <= upper_bound)]
|
| 147 |
+
|
| 148 |
+
if len(non_outliers) == 0:
|
| 149 |
+
mean_angle = torch.atan2(mean_y, mean_x) * 180.0 / torch.pi
|
| 150 |
+
mean_angle = (mean_angle + 360) % 360
|
| 151 |
+
return mean_angle # 如果没有非离群点,返回 None
|
| 152 |
+
|
| 153 |
+
# 对非离群点再次计算平均向量
|
| 154 |
+
radians = non_outliers * torch.pi / 180.0
|
| 155 |
+
x_coords = torch.cos(radians)
|
| 156 |
+
y_coords = torch.sin(radians)
|
| 157 |
+
|
| 158 |
+
mean_x = torch.mean(x_coords)
|
| 159 |
+
mean_y = torch.mean(y_coords)
|
| 160 |
+
|
| 161 |
+
mean_angle = torch.atan2(mean_y, mean_x) * 180.0 / torch.pi
|
| 162 |
+
mean_angle = (mean_angle + 360) % 360
|
| 163 |
+
|
| 164 |
+
return mean_angle
|
| 165 |
+
|
| 166 |
+
def scale(x):
|
| 167 |
+
# print(x)
|
| 168 |
+
# if abs(x[0])<0.1 and abs(x[1])<0.1:
|
| 169 |
+
|
| 170 |
+
# return x*5
|
| 171 |
+
# else:
|
| 172 |
+
# return x
|
| 173 |
+
return x*3
|
| 174 |
+
|
| 175 |
+
def get_proj2D_XYZ(phi, theta, gamma):
|
| 176 |
+
x = np.array([-1*np.sin(phi)*np.cos(gamma) - np.cos(phi)*np.sin(theta)*np.sin(gamma), np.sin(phi)*np.sin(gamma) - np.cos(phi)*np.sin(theta)*np.cos(gamma)])
|
| 177 |
+
y = np.array([-1*np.cos(phi)*np.cos(gamma) + np.sin(phi)*np.sin(theta)*np.sin(gamma), np.cos(phi)*np.sin(gamma) + np.sin(phi)*np.sin(theta)*np.cos(gamma)])
|
| 178 |
+
z = np.array([np.cos(theta)*np.sin(gamma), np.cos(theta)*np.cos(gamma)])
|
| 179 |
+
x = scale(x)
|
| 180 |
+
y = scale(y)
|
| 181 |
+
z = scale(z)
|
| 182 |
+
return x, y, z
|
| 183 |
+
|
| 184 |
+
# 绘制3D坐标轴
|
| 185 |
+
def draw_axis(ax, origin, vector, color, label=None):
|
| 186 |
+
ax.quiver(origin[0], origin[1], vector[0], vector[1], angles='xy', scale_units='xy', scale=1, color=color)
|
| 187 |
+
if label!=None:
|
| 188 |
+
ax.text(origin[0] + vector[0] * 1.1, origin[1] + vector[1] * 1.1, label, color=color, fontsize=12)
|
| 189 |
+
|
| 190 |
+
def matplotlib_2D_arrow(angles, rm_bkg_img):
|
| 191 |
+
fig, ax = plt.subplots(figsize=(8, 8))
|
| 192 |
+
|
| 193 |
+
# 设置旋转角度
|
| 194 |
+
phi = np.radians(angles[0])
|
| 195 |
+
theta = np.radians(angles[1])
|
| 196 |
+
gamma = np.radians(-1*angles[2])
|
| 197 |
+
|
| 198 |
+
w, h = rm_bkg_img.size
|
| 199 |
+
if h>w:
|
| 200 |
+
extent = [-5*w/h, 5*w/h, -5, 5]
|
| 201 |
+
else:
|
| 202 |
+
extent = [-5, 5, -5*h/w, 5*h/w]
|
| 203 |
+
ax.imshow(rm_bkg_img, extent=extent, zorder=0, aspect ='auto') # extent 设置图片的显示范围
|
| 204 |
+
|
| 205 |
+
origin = np.array([0, 0])
|
| 206 |
+
|
| 207 |
+
# 旋转后的向量
|
| 208 |
+
rot_x, rot_y, rot_z = get_proj2D_XYZ(phi, theta, gamma)
|
| 209 |
+
|
| 210 |
+
# draw arrow
|
| 211 |
+
arrow_attr = [{'point':rot_x, 'color':'r', 'label':'front'},
|
| 212 |
+
{'point':rot_y, 'color':'g', 'label':'right'},
|
| 213 |
+
{'point':rot_z, 'color':'b', 'label':'top'}]
|
| 214 |
+
|
| 215 |
+
if phi> 45 and phi<=225:
|
| 216 |
+
order = [0,1,2]
|
| 217 |
+
elif phi > 225 and phi < 315:
|
| 218 |
+
order = [2,0,1]
|
| 219 |
+
else:
|
| 220 |
+
order = [2,1,0]
|
| 221 |
+
|
| 222 |
+
for i in range(3):
|
| 223 |
+
draw_axis(ax, origin, arrow_attr[order[i]]['point'], arrow_attr[order[i]]['color'], arrow_attr[order[i]]['label'])
|
| 224 |
+
# draw_axis(ax, origin, rot_y, 'g', label='right')
|
| 225 |
+
# draw_axis(ax, origin, rot_z, 'b', label='top')
|
| 226 |
+
# draw_axis(ax, origin, rot_x, 'r', label='front')
|
| 227 |
+
|
| 228 |
+
# 关闭坐标轴和网格
|
| 229 |
+
ax.set_axis_off()
|
| 230 |
+
ax.grid(False)
|
| 231 |
+
|
| 232 |
+
# 设置坐标范围
|
| 233 |
+
ax.set_xlim(-5, 5)
|
| 234 |
+
ax.set_ylim(-5, 5)
|
| 235 |
+
|
| 236 |
+
def figure_to_img(fig):
|
| 237 |
+
with io.BytesIO() as buf:
|
| 238 |
+
fig.savefig(buf, format='JPG', bbox_inches='tight')
|
| 239 |
+
buf.seek(0)
|
| 240 |
+
image = Image.open(buf).copy()
|
| 241 |
+
return image
|
| 242 |
+
|
| 243 |
+
from render import render, Model
|
| 244 |
+
import math
|
| 245 |
+
axis_model = Model("./axis.obj", texture_filename="./axis.png")
|
| 246 |
+
def render_3D_axis(phi, theta, gamma):
|
| 247 |
+
radius = 240
|
| 248 |
+
# camera_location = [radius * math.cos(phi), radius * math.sin(phi), radius * math.tan(theta)]
|
| 249 |
+
# print(camera_location)
|
| 250 |
+
camera_location = [-1*radius * math.cos(phi), -1*radius * math.tan(theta), radius * math.sin(phi)]
|
| 251 |
+
img = render(
|
| 252 |
+
# Model("res/jinx.obj", texture_filename="res/jinx.tga"),
|
| 253 |
+
axis_model,
|
| 254 |
+
height=512,
|
| 255 |
+
width=512,
|
| 256 |
+
filename="tmp_render.png",
|
| 257 |
+
cam_loc = camera_location
|
| 258 |
+
)
|
| 259 |
+
img = img.rotate(gamma)
|
| 260 |
+
return img
|
| 261 |
+
|
| 262 |
+
def overlay_images_with_scaling(center_image: Image.Image, background_image, target_size=(512, 512)):
|
| 263 |
+
"""
|
| 264 |
+
调整前景图像大小为 512x512,将背景图像缩放以适配,并中心对齐叠加
|
| 265 |
+
:param center_image: 前景图像
|
| 266 |
+
:param background_image: 背景图像
|
| 267 |
+
:param target_size: 前景图像的目标大小,默认 (512, 512)
|
| 268 |
+
:return: 叠加后的图像
|
| 269 |
+
"""
|
| 270 |
+
# 确保输入图像为 RGBA 模式
|
| 271 |
+
if center_image.mode != "RGBA":
|
| 272 |
+
center_image = center_image.convert("RGBA")
|
| 273 |
+
if background_image.mode != "RGBA":
|
| 274 |
+
background_image = background_image.convert("RGBA")
|
| 275 |
+
|
| 276 |
+
# 调整前景图像大小
|
| 277 |
+
center_image = center_image.resize(target_size)
|
| 278 |
+
|
| 279 |
+
# 缩放背景图像,确保其适合前景图像的尺寸
|
| 280 |
+
bg_width, bg_height = background_image.size
|
| 281 |
+
|
| 282 |
+
# 按宽度或高度等比例缩放背景
|
| 283 |
+
scale = target_size[0] / max(bg_width, bg_height)
|
| 284 |
+
new_width = int(bg_width * scale)
|
| 285 |
+
new_height = int(bg_height * scale)
|
| 286 |
+
resized_background = background_image.resize((new_width, new_height))
|
| 287 |
+
# 计算需要的填充量
|
| 288 |
+
pad_width = target_size[0] - new_width
|
| 289 |
+
pad_height = target_size[0] - new_height
|
| 290 |
+
|
| 291 |
+
# 计算上下左右的 padding
|
| 292 |
+
left = pad_width // 2
|
| 293 |
+
right = pad_width - left
|
| 294 |
+
top = pad_height // 2
|
| 295 |
+
bottom = pad_height - top
|
| 296 |
+
|
| 297 |
+
# 添加 padding
|
| 298 |
+
resized_background = ImageOps.expand(resized_background, border=(left, top, right, bottom), fill=(255,255,255,255))
|
| 299 |
+
|
| 300 |
+
# 将前景图像叠加到背景图像上
|
| 301 |
+
result = resized_background.copy()
|
| 302 |
+
result.paste(center_image, (0, 0), mask=center_image)
|
| 303 |
+
|
| 304 |
+
return result
|
vision_tower.py
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
import torch.nn.init as init
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
|
| 6 |
+
from paths import *
|
| 7 |
+
|
| 8 |
+
from typing import Dict, List, Optional, Set, Tuple, Union
|
| 9 |
+
from transformers import AutoImageProcessor, AutoModel, Dinov2Model
|
| 10 |
+
from transformers.models.dinov2.modeling_dinov2 import Dinov2Embeddings
|
| 11 |
+
from transformers.models.dinov2.configuration_dinov2 import Dinov2Config
|
| 12 |
+
import numpy as np
|
| 13 |
+
from contextlib import nullcontext
|
| 14 |
+
|
| 15 |
+
def get_activation(activation):
|
| 16 |
+
if activation.lower() == 'gelu':
|
| 17 |
+
return nn.GELU()
|
| 18 |
+
elif activation.lower() == 'rrelu':
|
| 19 |
+
return nn.RReLU(inplace=True)
|
| 20 |
+
elif activation.lower() == 'selu':
|
| 21 |
+
return nn.SELU(inplace=True)
|
| 22 |
+
elif activation.lower() == 'silu':
|
| 23 |
+
return nn.SiLU(inplace=True)
|
| 24 |
+
elif activation.lower() == 'hardswish':
|
| 25 |
+
return nn.Hardswish(inplace=True)
|
| 26 |
+
elif activation.lower() == 'leakyrelu':
|
| 27 |
+
return nn.LeakyReLU(inplace=True)
|
| 28 |
+
elif activation.lower() == 'sigmoid':
|
| 29 |
+
return nn.Sigmoid()
|
| 30 |
+
elif activation.lower() == 'tanh':
|
| 31 |
+
return nn.Tanh()
|
| 32 |
+
else:
|
| 33 |
+
return nn.ReLU(inplace=True)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class MLP_dim(nn.Module):
|
| 38 |
+
def __init__(
|
| 39 |
+
self, in_dim=512, out_dim=1024, bias=True, activation='relu'):
|
| 40 |
+
super().__init__()
|
| 41 |
+
self.act = get_activation(activation)
|
| 42 |
+
self.net1 = nn.Sequential(
|
| 43 |
+
nn.Linear(in_dim, int(out_dim), bias=bias),
|
| 44 |
+
nn.BatchNorm1d(int(out_dim)),
|
| 45 |
+
self.act
|
| 46 |
+
)
|
| 47 |
+
self.net2 = nn.Sequential(
|
| 48 |
+
nn.Linear(int(out_dim), out_dim, bias=bias),
|
| 49 |
+
nn.BatchNorm1d(out_dim)
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
def forward(self, x):
|
| 53 |
+
return self.net2(self.net1(x))
|
| 54 |
+
|
| 55 |
+
class FLIP_Dinov2Embeddings(Dinov2Embeddings):
|
| 56 |
+
"""
|
| 57 |
+
Construct the CLS token, mask token, position and patch embeddings.
|
| 58 |
+
"""
|
| 59 |
+
|
| 60 |
+
def __init__(self, config: Dinov2Config) -> None:
|
| 61 |
+
super().__init__(config)
|
| 62 |
+
|
| 63 |
+
def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.Tensor] = None) -> torch.Tensor:
|
| 64 |
+
batch_size, _, height, width = pixel_values.shape
|
| 65 |
+
target_dtype = self.patch_embeddings.projection.weight.dtype
|
| 66 |
+
embeddings = self.patch_embeddings(pixel_values.to(dtype=target_dtype))
|
| 67 |
+
|
| 68 |
+
# add the [CLS] token to the embedded patch tokens
|
| 69 |
+
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
|
| 70 |
+
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
|
| 71 |
+
|
| 72 |
+
# add positional encoding to each token
|
| 73 |
+
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
|
| 74 |
+
|
| 75 |
+
if bool_masked_pos is not None:
|
| 76 |
+
# embeddings = torch.where(
|
| 77 |
+
# bool_masked_pos.unsqueeze(-1), self.mask_token.to(embeddings.dtype).unsqueeze(0), embeddings
|
| 78 |
+
# )
|
| 79 |
+
B,S,D = embeddings.shape
|
| 80 |
+
batch_indices = torch.arange(B).unsqueeze(1)
|
| 81 |
+
embeddings = embeddings[batch_indices, bool_masked_pos]
|
| 82 |
+
|
| 83 |
+
embeddings = self.dropout(embeddings)
|
| 84 |
+
|
| 85 |
+
return embeddings
|
| 86 |
+
|
| 87 |
+
class FLIP_DINOv2(Dinov2Model):
|
| 88 |
+
def __init__(self, config):
|
| 89 |
+
super().__init__(config)
|
| 90 |
+
|
| 91 |
+
self.embeddings = FLIP_Dinov2Embeddings(config)
|
| 92 |
+
|
| 93 |
+
class DINOv2_MLP(nn.Module):
|
| 94 |
+
def __init__(self,
|
| 95 |
+
dino_mode,
|
| 96 |
+
in_dim,
|
| 97 |
+
out_dim,
|
| 98 |
+
evaluate,
|
| 99 |
+
mask_dino,
|
| 100 |
+
frozen_back
|
| 101 |
+
) -> None:
|
| 102 |
+
super().__init__()
|
| 103 |
+
# self.dinov2 = AutoModel.from_pretrained(DINO_BASE)
|
| 104 |
+
if dino_mode == 'base':
|
| 105 |
+
self.dinov2 = FLIP_DINOv2.from_pretrained(DINO_BASE, cache_dir='./')
|
| 106 |
+
elif dino_mode == 'large':
|
| 107 |
+
self.dinov2 = FLIP_DINOv2.from_pretrained(DINO_LARGE, cache_dir='./')
|
| 108 |
+
elif dino_mode == 'small':
|
| 109 |
+
self.dinov2 = FLIP_DINOv2.from_pretrained(DINO_SMALL, cache_dir='./')
|
| 110 |
+
elif dino_mode == 'giant':
|
| 111 |
+
self.dinov2 = FLIP_DINOv2.from_pretrained(DINO_GIANT, cache_dir='./')
|
| 112 |
+
|
| 113 |
+
self.down_sampler = MLP_dim(in_dim=in_dim, out_dim=out_dim)
|
| 114 |
+
self.random_mask = False
|
| 115 |
+
if not evaluate:
|
| 116 |
+
self.init_weights(self.down_sampler)
|
| 117 |
+
self.random_mask = mask_dino
|
| 118 |
+
if frozen_back:
|
| 119 |
+
self.forward_mode = torch.no_grad()
|
| 120 |
+
else:
|
| 121 |
+
self.forward_mode = nullcontext()
|
| 122 |
+
|
| 123 |
+
def forward(self, img_inputs):
|
| 124 |
+
device = self.get_device()
|
| 125 |
+
# print(img_inputs['pixel_values'].shape)
|
| 126 |
+
|
| 127 |
+
with self.forward_mode:
|
| 128 |
+
if self.random_mask:
|
| 129 |
+
B = len(img_inputs['pixel_values'])
|
| 130 |
+
S = 256
|
| 131 |
+
indices = []
|
| 132 |
+
for i in range(B):
|
| 133 |
+
tmp = torch.randperm(S)[:S//2]
|
| 134 |
+
tmp = tmp.sort().values + 1
|
| 135 |
+
indices.append(tmp)
|
| 136 |
+
indices = torch.stack(indices, dim=0)
|
| 137 |
+
indices = torch.cat([torch.zeros(B, 1, dtype=torch.long, device='cpu'), indices], dim=1)
|
| 138 |
+
# print(indices.shape)
|
| 139 |
+
img_inputs['bool_masked_pos'] = indices.to(device)
|
| 140 |
+
|
| 141 |
+
dino_outputs = self.dinov2(**img_inputs)
|
| 142 |
+
dino_seq = dino_outputs.last_hidden_state
|
| 143 |
+
# B,S,_ = dino_seq.shape
|
| 144 |
+
# dino_seq = dino_seq.view(B*S,-1)
|
| 145 |
+
dino_seq = dino_seq[:,0,:]
|
| 146 |
+
|
| 147 |
+
down_sample_out = self.down_sampler(dino_seq)
|
| 148 |
+
# down_sample_out = down_sample_out.view(B,S,-1)
|
| 149 |
+
# down_sample_out = down_sample_out[:,0,:]
|
| 150 |
+
|
| 151 |
+
return down_sample_out
|
| 152 |
+
|
| 153 |
+
def get_device(self):
|
| 154 |
+
return next(self.parameters()).device
|
| 155 |
+
|
| 156 |
+
def init_weights(self, m):
|
| 157 |
+
if isinstance(m, nn.Linear):
|
| 158 |
+
init.xavier_uniform_(m.weight)
|
| 159 |
+
if m.bias is not None:
|
| 160 |
+
init.constant_(m.bias, 0)
|
| 161 |
+
|